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1 Opening Act

Patient walks into the doctor and says, “Doc, I saw that new ad. The one were

the people with nice teeth and loose clothing are cavorting. I want to cavort.

Ad said, ‘Ask your doctor about profitol.’ So I’m asking. Is it right for me?

Will it clear up my condition?”

The doctor answers: “Well, in a clinical trial it was shown that if you re-

peated that clinical trial an infinite number of times, each time the same but

randomly different, and if each time you calculated a mathematical thing called

a z-statistic, which assumes profitol doesn’t work, there was a four percent

chance that a z-statistic in one of those repetitions would be larger in absolute

value than the z-statistic they actually saw. That clear it up for you? Pardon

the pun.”

Patient: “You sound like you buy into that null hypothesis significance test-

ing stuff. No. What I want to know, and I think it’s a reasonable request, is

that if I take this drug am I going to get better? What’s the chance?”
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Doctor: “I see. Let me see if I can clarify that for you. In that trial, it was

found a parameter in a probability model related to getting better versus not

getting better, a parameter which is not actually the probability but a parameter

like it of getting better, had a ninety-five-percent confidence interval of 1.01 to

1.14. So. Shall I write you a prescription?”

Patient: “I must not be speaking English. I’m asking only one thing. What’s

the chance I get better if I take profitol?”

Doctor: “Ah, I see what you mean now. No. I have idea. We don’t do those

kind of numbers. I can give you a sensitivity or a specificity if you want one of

those.”

Patient: “Just give me the pill. My insurance will cover it.”

Ladies and gentlemen: the story you have heard is true. Only the names

have been changed to protect the guilty.

2 Pleading The Parameter

Ordinary people ask questions like the patient’s: Supposing X is true, what is

the chance that Y? Answering is often easy. If X = “This die has six different

sides, which when thrown must show only one face up”, the probability of Y =

“a five shows” is 1/6. Casinos make their living doing this.

The professionals who practice statistics are not like ordinary people. They

are puzzled when asked simple probability questions. Statisticians really will

substitute those mouthfuls about infinite trials or parameters in place of answer-

ing probability questions. Then they will rest, figuring they have accomplished

something. That these curious alternate answers aren’t what anybody wants

never seems to bother them.

Here is why this is so.

We have uncertainty about some Y, like the progress of a disease, the topmost
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side of a die, the spin of a particle, anything. Ideally we should identify the

causes of this Y, or of its absence. If we could know the cause or know of its

lack, then the uncertainty we have would disappear. We would know. If the

doctor could know all the causes of curing the patient, then he and the patient

would know with certainty if the proposed treatment would work, or to what

extent.

Absent knowledge of cause there will be uncertainty, our most common state,

and we must rely on probability. If we do not know all the causes of the cure

of the disease, the best we can say is that if the patient takes the drug he has

a certain chance of getting better. We can quantify that chance if we propose

a formal probability model. Accepting this model, we can answer probability

questions.

We don’t provide these answers, though. What we do instead is speak

entirely about the innards of the probability model. The model becomes more

important than the reality about which the model speaks.

In brief, we first propose a model that “connects” the X and Y probabilis-

tically. This model will usually be parameterized; parameters being the math-

ematical objects that do the connecting. Statistical analysis focuses almost

entirely on those parameters. Instead of speaking of the probability of Y given

some X, we instead speak of the probability of objects called statistics when

the value of one or more of these parameters take pre-specified values. Or we

calculate values of these parameters and act as if these values were the answers

we sought.

This is not just confusing, it is wrong, or at least wrong-headed.

Why these substitutions for simple probability questions happen is answered

easily. It is because of the belief that probability exists. Probability, some say,

exists in the same way an electric charge exists, or in the way the length of
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the dollar bill exists. Observations have or are “drawn from” “true” probability

distributions. If that is true, and probability really does exist, then the param-

eters in those parameter models also exist, or are measures of real things. This

being so, it makes sense to speak of these real objects and to study them, as we

might, say, study the chemical reactions that make flagellum lash.

The opposite view is that probability does not exist, that it is entirely epis-

temological, a measure of uncertainty. Probability is a (possibly quantified)

summary of the uncertainty we entertain about some Y given some evidence X.

In that case, it does not make sense to speak of model parameters, except in

the formal model building steps, steps we can leave to the mathematicians.

These two beliefs, probability is real or in the mind, have two rough camps of

followers. The one that believes probability exists flies the flag of Frequentism.

The one that says it doesn’t flies the flag of Bayes. Yet most Bayesians, as

they call themselves, are really frequentist sympathizers. When the data hits

the code, the courage of their convictions withers and they cross to the other

side and become closet frequentists. Which is fair enough, because frequentists

do the same thing in reverse when discussing uncertainty in parameters. The

result is a muddle.

Let me first try to convince you probability doesn’t exist. Then I’ll explain

the two largest generators of over-certainty that come from the belief in proba-

bility existing. Finally, I’ll offer the simple solution, a solution which has already

been discovered and is in wide-spread use, but not by statisticians or those who

use statistical models.

3 Roll With It

You do not have a probability of being struck by lightning. Nobody does.

There is no probability an electron will pass through the top slit of a two-slit
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experiment. There is no chance for snake eyes at the craps table.

There is no probability a random mutation will occur on a string of DNA

and turn the progeny of one species into a new species. There is no probability

a wave function for some quantum system will collapse into a definite value.

There isn’t any chance you have cancer. There isn’t any chance that physical

(so-called) constants, such as the speed of light, took the values they do so that

the universe could evolve to be observed by creatures like us.

If probability existed in an ontological sense, then things would have prob-

abilities. If a thing had probability, like you being struck by lightning, then

probability would be an objective property of the thing, like a man’s height or

an electron’s charge. In principle, this property could be measured, given speci-

fied circumstances, just like height or charge. Probability would have to be more

than just a property, though. It either must act as a cause, or it must modify

causes to the thing of interest. It would, for example have to draw lightning

toward you in some circumstances and repel it in others, or it would have to

modify the causes that did those things. If probability is a direct cause, it has

powers, and powers can be measured, at least in principle. If probability only

modifies causes, it can either be adjusted in some way, i.e. it is variable, or it is

fixed. In either case, it should be easy, at least for simple systems, to identify

these properties.

If things have probability, what part of you, or you plus atmospheric electric-

ity, or you plus whatever, has the probability of being struck by lightning? The

whole of you, or a specific organ? If an organ, then probability would have to be

at least partly biological, or it would be able to modify biology. Is it adjustable,

this probability, and tunable like a radio so that you can increase or decrease its

strength? Does some external cause act on this struck-by-lightning probability

so that it vanishes when you walk indoors? Some hitherto hidden force would
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have to be responsible for this. What are the powers of this cause and by what

force or forces does it operate? Is this struck-by-lightning probability stored in

a different part of your body than the probabilities of cancer or of being audited

by the IRS? Since there are many different things that could happen to you,

each with a chance of happening, we must be swarming with probabilities. How

is it that nobody has ever seen one?

Here is a statement: “There are four winged frogs with magical powers in a

room, one of whom is named Bob; one winged frog will walk out the door.” Given

this statement, what is the probability that “Bob walks out”? If probability is

in things, how is it in non-existent winged frogs? Some say that Germany would

have won World War II if Hitler did not invade Russia. What is the probability

this is true? If probability exists, then how could probability be in a thing that

never happened?

I was as I wrote this either drinking a tot of whiskey or I was not. What is

the probability I was drinking that whiskey? Where does the probability live

in this case, if it is real: in you, in me, in the whiskey? There is an additional

problem. Since I know what I was doing, the probability for me is extreme, i.e.

either 0 or 1, depending on the facts. The probability won’t be either number

for you since you can’t be certain. Probability is different for both of us for the

same event. And it would seem it should be different for everybody who cared

to consider the question. Probability if it exists must be on a continuum of a

sort, or perhaps exist as something altogether different. Yet since probability

can be extreme, as it is for me in this case and is for you, too, once you learn the

facts (I was not drinking), it must be, if probability is real, that the probability

just “collapsed” for you. Or does it go out of existence?

Well, maybe probability doesn’t exist for any of these things, but it surely

must exist for quantum mechanical objects, because, as everybody knows, we
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calculate the probability of QM events using functions of wave functions (func-

tions of functions!), and everybody believes wave functions are ontologically

real. Yet we also calculate probabilities of dice rolls as functions of the physi-

cal properties of dice, and probability isn’t in these properties, because if we’re

careful we can control outcomes of dice throws. We can know and manipulate

all the causes of dice throws. We know we can’t with QM objects.

Probability in QM isn’t the wave function, it’s a function of the wave func-

tion, and also of the circumstances of the measurement that was made (the

experiment). The reason we think QM events have probability is that we can-

not manipulate the circumstances of the measurement to produce with certainty

stated events, like we can with dice (and many things), by carefully controlling

the spin and force with which dice are thrown. Again, with dice, we can control

the cause of the event, with QM we cannot. The results in QM are always

uncertain; the results with dice need not be. Since Bell, we know we cannot

know or control all the causes of QM events (the totality of causes). This has

caused some people to say the cause of QM events doesn’t exist, yet things still

happen, therefore that this non-existent cause is probability. Some will make

this sound more physical by calling this strange causal-non-causal probability

propensity, but given all the concerns noted above, it is easy to argue propensity

is just probability by another name.

Whether or not that is true, and even if these brief arguments are not to

convince you probability does not exist, and accepting philosophers constantly

bicker over the details, I am hoping it is clear that if in any situation we did

know the cause of an event, then we would not need probability. Or, rather,

conditional on this causal knowledge, probability would always be extreme. At

the least, probability is related to the amount of ignorance we have about cause.

The stronger the knowledge of cause, the closer to extreme the probability is. In
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any case, it is knowledge of cause which is of the greatest importance. Searching

for this knowledge is, after all, the purpose of science.

The main alternate view of probability is to suppose it is always a statement

of evidence, that it always epistemological. Probability is about our uncertainty

in things, and not about things as they are in themselves. Probability is a branch

of epistemology and not ontology. Bruno de Finetti famously shouted this view,

and after an English translation of his rebel yell appeared in 1974, there was an

explosion of interest in Bayesian statistics, the theory which supposedly adopts

this position.1 Everybody quotes this, for good reason (ellipsis original):

The abandonment of superstitious beliefs about the existence

of the Phlogiston,the Cosmic Ether, Absolute Space and Time,...or

Fairies and Witches was an essential step along the road to scien-

tific thinking. Probability, too, if regarded as something endowed

with some kind of objective existence, is no less a misleading mis-

conception, an illusory attempt to exteriorize or materialize our true

probabilistic beliefs.

There were others beside de Finetti, like the physicist E.T. Jaynes, economist

John Maynard Keynes, and the philosopher David Stove, who all held that

probability is purely epistemological.2 Probability is an objective classification

or quantification of uncertainty in any proposition, conditional only on stated

evidence.

After de Finetti’s and these others’ works appeared, and for other reasons,

many were ready to set aside or give less oxygen to frequentism, the practice

of statistics which assumes that probability is real and only knowable “in the

limit”. Room was made for something called subjective Bayesianism. Bayesian-

ism is the idea probability is epistemic and that it can be known subjectively.

Probability is therefore mind dependent. Yet if probability is wholly subjective,
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a bad meal may change the probability of a problem, so we have to be careful

to define subjectivity.

Frequentism, with its belief in the existence of probabilities, is far from dead.

It is the form of and practice of statistics taught and used almost everywhere.

All Bayesians start as frequentists, which might be why they never let themselves

break entirely free from it.

Now the philosophical position one adopts about probability has tremendous

consequences. You will have heard of the replication crisis afflicting fields which

rely heavily on statistics, whereby many results once thought to be novel or

marvelous are now questioned or are being abandoned.3 Effects which were

once thought to be astonishing shrink in size the closer they are examined. The

crisis exists in part because of the belief probability is real. Even beside this

crisis, there is massive over-certainty generated in how statistics is practiced.

4 What Probability Is And Isn’t

All probability can be written in this schema:

Pr(Y|X),

where Y is the proposition of interest, and X all the information that is known,

assumed, observed, true, or imagined to be true, information that is thought

to be probative of Y. Included in X—and here is what is most forgotten in the

heat of calculation—are the rules of grammar, definitions of words and symbols,

mathematical or in some other language, and all other tacit knowledge about X

and Y which is thought too obvious to write down. X must always be present.

However useful as shorthand, it is an error to write, sans X, Pr(Y), notation

which suggests that probability exists and that Y has a single unique probability
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that can be discovered.

All probability is conditional on some X. If this is doubted, it is an interest-

ing exercise to try and write a probability of some Y without an X. Pick any

proposition Y and try to show it has a unique probability without any condi-

tions whatsoever; i.e. that Pr(Y) for your Y exists. You will soon discover this

cannot be done. Recall that all tacit premises of grammar and definitions about

Y must be included as premises X. Try Y = “This proposition is false.” What

is Pr(Y)? This is hours of fun for the kids.

What is the probability of Y = “I have cancer”? The question is pressing

and relevant. It is clear that your knowledge of whether you have cancer is not

the same as whether you actually have cancer. Since the question is of enormous

interest, we want to give an answer. Information that is relevant to the causes

of cancer present themselves: “I’m a man, over fifty; I smoke and am too fond

of donuts...” This amorphous list is comprised of what you have heard, true or

not, about causes of cancers. You might reason

Pr(Cancer|I Smoke) = good chance.

There are no numbers assigned. No numbers can be assigned, either; none

deduced, that is. To do that we need to firm up the X to create a mathematical

tie between it and Y.

The real interest in any probability calculation is therefore in X: which X

count for this Y. Ideally, we want to know the cause, the reason, for Y’s truth

or its falsity. Once we know a thing’s cause or reason for existence, we are done.

Barring this perfect state of knowledge, we’d like to get as close as we can to

that perfection. Science is the search for the X factor.

The choice of Y is free. This part of probability can be called subjective.

Once a Y is decided upon, the search for the X that is Y’s cause, or is in
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some other way probative, begins. Probability can be called subjective at this

step, too, for what counts as evidence can itself be uncertain. Sports are a

good example. I think it’s likely the Tigers will win tomorrow, while you say it

isn’t. We list and compare all our premises X, some of which we both accept,

some we don’t and which are individual to each of us. If I agree with all your

evidence, then I must agree with your probability. In this way, probability is

not subjective. Probability is not decision, or rather it comes before decision, so

that even if we agree in all X, and therefore our probabilities match, we might

differ in what decisions we make conditional on this.

If we agree that X = “This is a 6-sided...etc.” and that Y = “A five spot

shows” then it would be absurd if you said the probability was, say, 4/6 while

I said 1/6. If you did say 4/6 it must be because you have different, tacit, X

than I have. Our premises do not agree. But if they did agree, then probability

is no more subjective in its calculation than is algebra once the equation is set.

Once the X and Y are fixed, the answers are deduced.

One form of subjective probability asks a man to probe his inner feelings,

which become his X, to use in calculating the probability of Y. The process is

called “probability elicitation”, which makes it sound suitably scientific. And it

can be, though it can lead to forced quantification, hence over-certainty. Since

the choice of X is free, there is no problem per se with this practice, except that

it tends to hide the X, which are the main point of any probability exercise.

Subjective probability becomes strange when some require the mind to enter

into the process of measurement, as some do with quantum mechanics.4 That

subject is too large for us today.

In practice, there is little abuse of subjective probability in ordinary statisti-

cal problems. Mostly because there is nothing special about Bayesian probabil-

ity calculus itself. It is just probability. Bayes is a useful formula for computing
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probabilities in certain situations, and that’s it. Bayes is supposed to “update”

belief, and it can, but the formula is just a mechanism. We start with some

X1, probative about Y. We later learn X2, and now we want Pr(Y|X1X2). The

Bayes formula itself isn’t strictly needed (though no one is arguing for discard-

ing it) to get that. We always want Pr(Y|X) whatever the X is, and whenever

we get it. If we call X the “updated information”, the union of X1 and X2, then

it may be that Bayes formula provides a shortcut to the calculation, and again

it may not.

The real departure of Bayes from frequentism is not in the questions of

the subjectivity of probability, for the same subjective choices must be made

by frequentists in picking their Y and X. It’s that Bayes insists all uncertain

propositions must have conditional probability in the epistemic sense, whereas in

frequentism things that were said to be “fixed” do not, and are in fact forbidden

by the precepts of the theory to have anything to do with probability. The real

cleft is whether or not the uncertainty in parameters of probability models

should be quantified with probability. Bayesians say yes, frequentists no. Just

what are these parameters?

5 Modeling Agency

A model or theory is a list of premises X which are probative of Y. If a number

and not just a word for the probability is desired, some way to connect the X to

the Y such that quantities can be derived must be present. This can be trivial

counting as when

X = “This machine must take 1 of n states”

to
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Pr(Y = “This machine is in state j”|X) = 1/n.

The deduction to 1/n can be done by calling to the symmetry of logical

constants5. There is no looseness in X: it is specific. This is important: we must

take the words as they are without addition (except of course their definitions).

That is, there is no call to say “Well, some machines break”, which may be true

for some machines, but it is not supposed here. Probability is always, or should

always, be calculated on the exact X specified, and nothing else.

More complex probability models use parameterized distributions, an ubiq-

uitous example being the normal, the familiar bell-shaped curve. It is properly

said to represent uncertainty in some observable Y. But often people will say

Y is normal, as if the observable has the properties of a normal, which is an-

other way of saying probability exists. If the probability exists, the parameters

of normal distribution must also exist, and must in some way be part of the

observable, or the observable plus measurement, as suggested above. The man-

ner in which this might be true is, of course, never really specified. It’s simple

enough to show that this can’t be true, or at least that it can’t be known to be

true.

Our X in this case might be “The uncertainty in Y is represented by a nor-

mal with parameters 10 and 5”. Any Y will do, such as Y = “The measurement

is 7.” We can calculate Pr(Y|X), which is equal to 0. And is equal to 0 for

any singular or point measurement. Which is to say, given X, the probability

of any point measurement is 0. This happens because, as is well known, the

normal gives all its probability to the continuum and none to actual measure-

ments. There is no difficulty in the math, but this situation presents a twist

to understanding probability. Any measurement we might take is finite and

discrete; no instrument can probe reality to an infinite level, nor can we store
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infinite information. There is therefore no set of actual measurements that can

ever conclusively prove an observable is, or is from, a normal distribution.

The counter to this is to appeal to the central limit theorem and say collec-

tions of measurements of observables are comprised, or are made by, many small

causes. In the limit, it is therefore the case the observable is a normal. This

proof is circular. There is no justification for assigning the normal distribution

in the first place to an observable because we don’t know it will always and

forevermore be created by these small additive causes. The only time we can

know we have a normal is when we are at that happy limit where we know all

there is to know about the observable. At which point we will no longer need

probability. Beside all that, there is no proof, and every argument against, any-

thing lasting forever. This real-world finiteness is granted, but it still claimed y

is normal, with the feeling—it is no more than that—that the normal is what

in part generates or causes y. This is a strange view is never really fleshed out.

These same objections about finiteness apply to any probability model of

measured observables that are not deduced and which are merely applied ad

hoc. Most models are in fact ad hoc. Of course, the normal, and many similar

models, are often employed in situations where the measurements are known to

be finite and discrete. These models can be and are useful, as long as we are

happy with speaking of probabilities of intervals and not singular points, and

we’re aware at all times the models are approximations.

Suppose in fact we are willing to characterize our uncertainty in some ob-

servable y with a normal distribution, the familiar bell-shaped curve, with pa-

rameters 0 and 1 (the lower case y is shorthand to things like Y = “y > 0”).

These parameters specify the center of the bell and give its spread. These sup-

positions about the model and parameters are our X. It’s then easy to calculate

things like Pr(y > 0|X) = 0.5. It’s also clear that we have perfect certainty in
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the parameters: they were given to us. It would be an obvious error to say that

the uncertainty we have in these parameters, which is none, is the same as the

uncertainty we have in the observable, which is something.

Yet this mistake is made in practice. To see how let’s expand our model.

We have the same observable and also a normal, only this time we don’t know

what values the parameters (µ, σ) take. We want to know Pr(y ∈ s|X) for some

set s, where X is the assumption of the normal. Since the parameterµ can

take any value on the real line, and σ any value on the non-negative part of

the real line, there is no way to calculate this probability of y ∈ s. Something

first has to be said about the parameters. Above we dictated them, which is a

form of Bayesianism. They may have even been deduced from other premises,

such as symmetry in some applications. That deduction, too, is Bayes. These

additional premises fall into X, and the calculation proceeds.

Any premises relevant to the parameters can be used. When these premises

put probabilities on the parameters the premises are called “priors”; i.e. what we

know or assume about the parameters before any other information is included.

A common set of prior premises is to suppose that µ ∼ N(ν, τ), another normal

distribution where the “hyper-parameters” (ν, τ) are assumed known by fiat,

and that σ ∼ IG(α, β), an inverse gamma (the form is not important to us),

and again where the hyper-parameters (α, β) are known (or specified).

A frequentist does not brook with any of this, insisting that once the proba-

bility model for y is specified, the parameters (µ, σ) come into existence, or they

always existed, only we just now became aware of them (though not of their

value). These parameters must exist since probability exists. The parameters

have “true” values, and it is a form of mathematical blasphemy to assign prob-

ability to their uncertainty. The frequentist is then stuck. If he isn’t handed the

true values by some oracle, he cannot say anything about Pr(y ∈ s|X), where
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for him X is only evidence that he uses the normal.

The Bayesian can calculate Pr(y ∈ s|Xb), the subscript denoting the different

evidence than that assumed by the frequentist, Xf . The values of (ν, τ) and

(α, β) are first spoken, which gives the probabilities of the parameters. The

uncertainty in these parameters is then integrated out using Bayes’s formula,

which produces Pr(y ∈ s|Xb), which in this case has the form of a t-distribution,

the parameters of which are functions of the hyper-parameters. The math is

fun, but beside the point.

The frequentist objects that if the priors were changed, the probability of

y ∈ s will (likely) change. This seems a terrible and definitive objection to him.

The criticism amounts to this, in symbolic form: Pr(y ∈ s|X) 6= Pr(y ∈ s|W),

where X 6= W. This objection pushes on an open door. Since probability changes

when the probative premises change, of course the probability changes when

the priors change. But to the frequentist, probability exists and has true values.

These priors might not give the true values, since they are arbitrary. Even

granting that objection, the frequentist forgets the normal model in the first

place was also arbitrary, a choice between hundreds of other models. It too

might not give the true probability.

We’d be stuck here, except that the frequentist allows that previous obser-

vations of y are able to give some kind of information about the parameters.

The Bayesian says so too, but the kind of information for him is different.

The frequentist will use previous observations to calculate an “estimate” of

the parameters. In the normal model, for the µ it is usually the mean of the

previous y; for the σ it is usually the standard deviation of those y.6 The word

estimate implies a true value exists, because probability exists. The frequentist

admits there is uncertainty in the guesses, and constructs a “confidence interval”

around each guess. Here is the definition of a 95% confidence interval: if you
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repeated the experiment, or suite of measurements, or the set of circumstances

that gave rise to the observed y, an infinite number of times, each time exactly

the same but randomly different, and each time calculating the estimate and

the confidence interval for the estimate, then in that infinite set of confidence

intervals 95% of them will “cover” the true value of the parameter.

What of this confidence interval? The only thing that can be said is that

either the true value of the parameter is in it, or it isn’t. Which is a tautology

and always true, and therefore useless.

No frequentist ever in practice uses the official definition of the confidence

interval, proving that no frequentist has any real confidence in frequentist theory.

Every frequentist instead interprets the confidence interval as a Bayesian would,

as giving the chance the true value of the parameter is in this interval. The

Bayesian calculates his interval, called a “credible interval’, in a slightly different

way than the frequentist, using the priors and Bayes theorem. In the end, and

in many homely problems, the intervals of the frequentist and Bayesian are the

same, or close to the same. Even when the intervals are not close, there is a

well known proof that shows that as the number of the observations increases,

the effects of the prior on the interval vanish.

So, given these at least rough agreements, what’s the point of mentioning

these philosophical quibbles which excite statisticians but have probably bored

the reader?

There are two excellent reasons to bend your ear. The first is that, just as

frequentists became occult Bayesians in interpreting their results, the Bayesians

became cryptic frequentists when interpreting theirs! That the Bayesians also

speak of a “true” value of their parameter also means they don’t take their

theory seriously, either.

Even this wouldn’t be a problem, except for a glaring omission that seems
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to have escape everybody’s attention. This is the second reason to pay atten-

tion. We started by asking for Pr(y ∈ s|X). The frequentist supplied Xf and

the Bayesian Xb. Both calculated intervals around estimates of µ. Both then

stopped. What Pr(y ∈ s|Xf ) or Pr(y ∈ s|Xb) is we never learn. The parame-

ters have become everything. Actually, only one parameter: the second, σ, is

forgotten entirely.

6 Testing Our Patience

This parameter-centric focus of both frequentists and Bayesians has led to many

difficulties. The first is “testing”.

The patient we met at the beginning had Y = “I am cured” and X = “I

take profitol” and wanted Pr(Y|X). The doctor instead first told him the results

of a statistical test. The simplest such test works like this. Cures and failures

when taking profitol or a placebo happen. Since we don’t know all the causes

of cures or failures, it is uncertain whether taking the drug will cause a cure.

The uncertainty in the cause is quantified with a probability model, or in this

case two probability models. One has a parameter related to the probability

of a cure for the drug, and the second a parameter related to the probability

of a cure for the placebo. These parameters are often called the probabilities

of a cure, but they are not; if they were, we would know Pr(Cure|Drug) and

Pr(Cure|Placebo), and we’d pick whichever is higher.

The test begins with the notion that the probabilities are unknown and

must be estimated. But we never want to estimate the probability (except in a

numerical approximation sense): we want Pr(Cure|X) period, where X is every-

thing we are assuming. X includes past observations, the model assumptions,

and which pill is being swallowed. The problem here is the overloading of the

word probability: in the test it stands for a parameter, and it also stands for the
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actual conditional probability of a cure. Confusion arises through this double

meaning.

In other words, what we should be doing is calculating Pr(Cure|Drug(X))

and Pr(Cure|Placebo(X)). But we do not.

Instead we calculate a statistic, which is a function of the estimates of the

two parameters. There are many possible non-unique choices of this statistic,

with each giving a different answer to the test. One statistic is the z-statistic.

To calculate its probability, it is assumed the two parameters are equal. Not just

here in the past observations, but everywhere, for all possible observations. If

probability exists, these parameters exist, and if they exist they might be equal.

Indeed, they are said to be equal. With these assumptions, the probability

of seeing a z-statistic larger in absolute value than the one we actually saw is

calculated. This is the p-value.7

If the p-value is smaller than the magic number, which everybody knows and

which I do not have to repeat, it is decided that the two parameters representing

probability of cure are different, and by extension, the probability of cures are

different.

The Bayesian sees one weakness with this: the test puts things backwards.

It begins by assuming what we want to know, and uses some odd decision pro-

cess to confirm or disconfirm the assumption. We do not know the probability

the two parameters are unequal, or that one is higher than another, say. The

Bayesian might instead calculate Pr(θd > θp|X) (the notation being obvious).

This doesn’t have to be a strict greater-than, and can be any function of the

parameters that fits in with whatever decisions are to be made. For instance,

sometimes instead of this probability, something called a Bayes factor is calcu-

lated. The idea of expressing uncertainty in the parameters with probability is

the same.

19



The innovation of these parameter posteriors (for that is their name) over

testing is two-fold. First, it does not make a one-size-fits-all decision like p-

values and declare with finality that parameters are or aren’t different, or, in

the bizarre falsification language of testing, that it hasn’t been disproved they

are the same. Second, it puts a quantification on the probability on a potential

question of interest; i.e. whether the parameters really are different.

The Bayesian has stopped short: these posteriors do not answer the question

of interest. We wanted the probabilities of cures, not whether some dumb

parameters were different. Why not just forget all this testing and focus on

parameters and calculate these probabilities?

Alas, no. Instead of testing, what might be calculated is something called

a risk ratio, or perhaps an odds ratio. The true “risk” of a cure here is

Pr(Cure|Drug(X))/Pr(Cure|Placebo(X)). This is fine one-number summary of

the two probabilities, albeit with a small loss of information. The model-based

risk ratio is not this, and is instead a ratio of the parameters, which again are

not the probability but which are called probabilities. Since the probabilities

are never calculated, and instead estimates of the parameters are, an estimate of

the model risk ratio is given, along with its confidence or credible interval. The

big but is that this is an interval of the ratio of parameters, which exaggerates

certainty. Since we can, if we wanted to, calculate the ratio of the probabilities

themselves, it isn’t even needed.

This simple example is multiplied indefinitely because almost all statistical

practice revolves around parameter-centric testing, or parameter estimation.

Parameters are not the problem, though, because they are necessary in models.

Since at least because they can be never observed, and since they don’t answer

probability questions about the observable, they should not be the primary

focus.
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It is parameters or functions of parameters which are reported in almost

all analyses, it is the parameters which are fed into decisions, including formal

decision analysis; it is even in many cases the parameters which become pre-

dictions, and not observables. All this causes massive over-certainty, and even

many errors, mainly about ascribing cause to observations.

Here is a simple example of that over-certainty, using regression, that ubiq-

uitous tool. Regression assigns a parameter β to a supposed or suspected cause,

such a sex in a model of income. The parameter in this case will represent the

difference in sexes. The regression will first test whether this parameter is 0.

If it is decided, via a large p-value, that this parameter is 0, then it will be

announced “There is no difference in incomes between males and females.” If

the p-value is instead wee, then it will be said “Males and females have different

incomes.” The face over-certainty is obvious.

Next comes the point estimate of the parameter. Suppose income is mea-

sured in thousands, and that the estimate of the parameter is 9. It will be an-

nounced as definitive that “Males make on average $9,000 more than females.”

The confidence interval is, let’s say, (8, 10). It will be announced “There is a

95% chance males make from between $8,000 to $10,000 more than females.”

Even ignoring the misinterpretation of the confidence interval, this is still wrong.

These numbers are about the parameter, and not income. The predictive

probability Pr(M > F|X) will not be equal to Pr(β > 0|X). It depends on

the problem, but experience shows the latter probability is always much larger

than the former. The probability of the β > 0 may be close to extreme, while

the probability of the observables, M>F incomes, may be near 0.5, a number

which expresses ignorance about which sex makes more. Again, certainty in

the parameters does not translate into certainty in the observables. Worse, the

95% predictive interval in income differences will necessarily be wider than the

21



interval of the parameter. Experience shows that for many real-life data sets, the

observable predictive interval is 4-10 times wider than the parametric interval.

How much over-certainty really exists in published literature has not yet been

studied, but there is no sense that it is small. In the example we stared with,

with the normal (0, 1) model, the predictive interval is infinitely larger than the

parametric, which is 0.

This same critique can be applied to any probability model that is cast in

its parametric and not predictive, i.e. probability, form. The reason for the

parameter preference is because of the belief probability exists.

Observations, it is said, are “drawn from” probability distributions, which

are a feature of Nature. If we knew the true probability distribution for some

observable, then we’d make optimal decisions. Again, if probability exists, pa-

rameters exist, and it is a useful shorthand to speak of parameters and save

ourselves the difficulty of speaking of probabilities, which would be equivalent

in a causal sense. That β in the regression example is taken to be proving causes

exist that make males earn more than females—which might be true, but it is

not proven. Any number of things might have caused the income differences.

If we understood what was causing each Y, then we would know the true

state of nature. There is in statistical practice a sort of vague notion of cause.

In the drug example, if the test is passed, some will say that the drug is better

at causing cures than the placebo. Which, of course, might be true. But it

cannot be proven using probability.

In the set of observations we are imagining some cures were caused by the

placebo; now whether this was the placebo itself or that the placebo is a proxy

for any number of other causes is unimportant. The drug group we can assume

saw proportionately more cures. How many of those cures in that group were

caused by the placebo? All of them? None? There is no way to know, looking
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only at the numbers.

If we look outside the numbers to other evidence, we might know whether

the drug was a cure. Or sometimes a cure, since it will usually be the case

the drug does not cure all patients. We consider our knowledge of chemistry,

biology, and other causal knowledge. If all that tacitly becomes part of X, then

we can deduce that some of the cures in the drug group were caused by the

drug. But then it becomes a question of why everybody wasn’t cured, if the

drug is a cause of cures. It must be that there are some other conditions, as yet

identified or not assumed in X, that are different across individuals. In effect,

the discussion becomes of what is blocking the drug’s causal powers.

There is a prime distinction, well known, between observations that were

part of a controlled environment and those which were merely observed.8 Physi-

cists understand control well. In measuring an effect in an experiment, every

possible thing that is known or assumed to cause a change in the observable is

controlled. Assuming all possible causes have been identified, then the cause

in this experiment may be deduced. Of course, if this assumption is wrong or

ignored, then it is always the case that something exterior to our knowledge

was the true cause. If if it right but ignored, then who can disprove that inter-

dimensional Martian string radiation, or whatever, wasn’t the real cause? It is

thus always possible something other than the assumed cause was the true cause

of any observation. It is also the case that this complete openness to external

causes is silly.

We end where we began. If we knew the causes of the observable Y, we do

not need probability. If we do not know all the causes of Y, we are uncertain,

and thus need probability. Parameter-based testing and parameter estimation

are not probability of observables, but strange substitutes which cause over-

certainty.
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7 The Fix Is In

The fix is simplicity itself. Instead of testing or estimating, calculate Pr(Y|X).9

Give the probability of a cure when taking the drug; express the probability

males make more than females with a probability. Every statistical model can be

cast into this predictive approach. In Bayesian statistics it is called calculating

the predictive posterior distribution. Some do this, but usually only when the

situation seems naturally like a forecasting problem, like in econometrics. It

works for every model.

Even if you haven’t been convinced by all the earlier examples for the ex-

cellency of this suggestion, think of this. When we are analyzing a set of old

observations, we know all about those observations. Testing and estimation are

meant to say something about the hidden properties of these observations. If

these past observations are the only measurements we will ever take, then we

do not need testing or estimation! If we observed males had higher mean in-

come than females, then we are 100% certain of this (measurement error can be

accounted for if it arises). It is only because we are uncertain of the values of

observations not yet made known to us that we bothered with the model in the

first place. That demands the predictive, or probability, approach.

Computer scientists have long been on board with this solution. Just ask

them about their latest genetic neural net deep big learning artificial intelli-

gence algorithm. (Computer scientists are zealous in the opposite direction of

statisticians.) These models are intensely observable-focused. Those scientists

who must expose their theories to reality on a regular basis, like meteorologists,

are also in on the secret. The reason meteorologists’ probability predictions im-

prove, and why the models of say sociologists do not, is because meteorologists

test their models against real life on a daily basis.

I pick on sociology because they are heavy users of statistical models. They
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will release a model after it passes a test, which if you read the discussion

sections of their papers means to them that the theory they have just proposed

is true. Nobody can easily check that theory, though, since it is cast in the

arcane statistical language of testing or estimation. Anybody can check if the

weather forecast is right or useful. If instead the sociologist said, “If you do X,

the probability of Y is 0.9,” then anybody with the capability of doing X can

check for themselves how good or useful the model really is. You don’t need

access to the original data, either, nor anything else used in constructing the

model. You just need to do X.

The transparency of casting models in terms of probabilities, i.e. in their

predictive form, may be one reason why this practice hasn’t been adopted. One

can be mighty and bold in theorizing, but when one is forced to bet, well, the

virtue of humility is suddenly recalled.

Incidentally, if you have to ask your doctor whether an advertised pill is

right for you, you might want to consider finding a more knowledgeable doctor.

Notes

1. The book is Bruno de Finetti, 1974. Theory of Probability, (translation by A Machi and AFM

Smith of 1970 book), Volume 1, Wiley, New York; quote from p. x.

2. Necessary reading are Jaynes’s 2003 Probability: The Logic of Science, Cambridge University

Press, Jim Franklin’s 2001 “Resurrecting logical probability”, Erkenntnis, Volume 55, Issue 2,

pp 277–305, and John Maynard Keynes’s 2004 A Treatise on Probability, Dover Publications.

Stove is the dark horse here, and I could only wish his The Rationality of Induction were

better known.

3. There are any number of papers on the replication crisis. A typical one is Camerer et al.,

Evaluating the replicability of social science experiments in Nature and Science between 2010

and 2015. Nature Human Behaviour, 2 (9), pp. 637–644.

4. Christopher A. Fuchs is among those trying to marry subjective Bayesian probability with
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quantum mechanics. See Caves, C.M., C.A. Fuchs, and R. Schack, 2001. Quantum probabil-

ities as Bayesian probabilities, DOI: 10.1103/PhysRevA.65.022305.

5. David C. Stove, 1986, The Rationality of Induction, Oxford University Press. The second

half of the book is a brilliant justification of probability as logic which gives this rare proof.

Note this doesn’t have to be a real machine, so we don’t need notions of symmetry; rather,

symmetry is deduced from the premises.

6. So common are these estimates, that it has become customary to call the parameters the

mean and standard deviation; however this is strictly a mistake.

7. I have a collection of anti-p-value arguments in “Everything Wrong With P-Values Under

One Roof”, 2019, In Beyond Traditional Probabilistic Methods in Economics, V Kreinovich,

NN Thach, ND Trung, DV Thanh (eds.), Springer, pp 22—44. The use of p-values is chang-

ing. Even so staid an organization as the American Associations of Statisticians has begun

issuing warnings that probability-as-real measures like p-values should not be relied upon.

See Wasserstein, R.L. & Nicole A. Lazar, 2016. The ASA’s statement on p-values: context,

process,and purpose. The American Statistician, DOI: 10.1080/00031305.2016.1154108. Not

to be missed is the 2019 Nature article “Scientists rise up against statistical significance” by

Valentin Amrhein, Sander Greenland, Blake McShane, which relates how over 800 scientists

(I am one of them) signed a statement asking for the retirement of the phrase “statistically

significant”.

8. Some have embraced the notion that cause should be paramount in statistical analysis; a

notable example is Judea Pearl in his Causality, 2000, Cambridge University Press. These

changes in focus make an excellent start, and if there is any problem it is that the existence

of probability is still taken for granted.

9. Which X to include is a decision, like any decision, and should be treated as such. X added

that do not change the probability of Y, or do not change it such that any decision you would

make using the probability would not change, would not be included.

Briggs is the author of Uncertainy. Get some. Thanks to Philip Pilkington

and David Berlinkski for providing comments to an earlier draft.
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