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Abstract. How to assign numerical values for probabilities that do notseem artificial or arbitrary
is a central question in Bayesian statistics. The case of assigning a probability to the truth of a
proposition or event for which there isno evidence other than that the event is contingent, is
contrasted with the assignment of probability in the case where there isdefinteevidence that the
event can happen in a finite set of ways. The truth of a proposition of this kind is frequently assigned
a probability via arguments of ignorance, symmetry, randomness, the Principle of Indiffernce, the
Principal Principal, non-informativeness, or by other methods. These concepts are all shown to be
flawed or to be misleading. Thestatistical syllogismintroduced by Williams in 1947 is shown to fix
the problems that the other arguments have. An example in thecontext of model selection is given.

Keywords: Induction; Logical Probability; Principle of Indifference; Probability assignment.

There are (at least) two central foundational problems in statistics: how to objectively
justify probability models, and how to objectively assign probabilities to events and to
the parameters of probability models. The goal of both of these operations is to insure
that they are not arbitrary, or are not guided by the subjective whim of the user, and
that they logically follow from the explicit evidence that is given or assumed to be
known. First, it is useful to recall, what is often forgotten, that—both deductive and non-
deductive—arguments of logic are nothing more than the study betweenstatements, and
only between the statements explicitly defined.

So, supposep is a premise andq a conclusion to the argument fromp to q: which
is an argument that states, “(the proposition)p (is true) therefore (the proposition)q
(is true)" (the mathematically succinct way to write this isp⇒ q). Logical probability
makes statements about the truth of the conclusionq like this:

0≤ Pr(q|p) ≤ 1. (1)

Cox [1961], and like those in the logical probability tradition before him [2, 3, 4, 5],
states that if the limits 0 or 1 apply to the conclusionq of a given argument with premiss
p, thenq is, respectively, certainly false or certainly true. When the limits are reached,
then the logical connective (betweenq andp) is said to bedeductive. If the limits are not
reached, then the argument fromp tp q is invalid ornon-deductiveandq only probable.

Recall these common definitions:contingentmeans not necessarily true or false, and
an observation statement orevent is some thing that can happen (is not necessarily
false or impossible) in the given context (examples will be given below). Inductive
arguments—which are arguments from contingent premises which are premises that are,
or could have been, observed, to a contingent conclusion about something that has not



been, and may not be able to be, observed—are, of course, central in probability. In an
earlier paper [6], I examine induction in statistics and probability.

This article surveys the most common arguments used in assigning probabilities to
uncertain events where the event can happen in a finite numberof (known) ways.
These ways are usually assigned equal probability. The usual reasons given for equi-
probable assignment are: ignorance, “no reason" or indifference, non-informativeness,
symmetry, randomness, and some very well known mathematical arguments. All of
these arguments, by no means mutually exclusive, will be shown to be flawed, or to
be misleading, or to imply the necessity of subjectivity when it is not needed. Instead,
an old argument, called the “statistical syllogism", will bere-introduced. The statistical
syllogism avoids the problems inherent in the others, with the added benefit of clearly
and completely delineating the information used in a given problem.

IGNORANCE

To stress: logical probability concerns itself with assigning probabilities to the conclu-
sions of arguments with explicitly stated, and fixed, premises. It is easy to assign prob-
ability when the argument is deductive: the probability being 0 or 1. For an example
of a common, non-inductive (and non-deductive) argument, suppose we havedefinite
knowledge, labelledec, thatM is some non-contradictory contingent statement, propo-
sition, or description of an event, andt any tautology. That is, weknow that M is not
necessarily true or false; we also do not know, we are ignorant, whetherM will happen.
The argument:t ∧ec ⇒ M is not valid (and is read “t andec, thereforeM is true"). The
most common tautologies used in cases like this aret =“I am ignorant aboutM, but I
know it can be true or false," ort=“M will happen or it won’t"; both of these ways of
writing t implicitly attach the definite knowledgeec thatM is contingent, except that the
first mistakenly adds “I am ignorant" since weknowof M’s contingency. Now, it is true
thatt; or the statementt is always true. A principle of logical probability gives:

0 < Pr(M (is true)|t,ec) < 1. (2)

And that is thebestwe can ever do with only the definite knowledge thatM is contingent
(e.g., Keynes [4]). This point, which has caused much confusion, is well worth reflecting
upon, and which is amplified below. It follows from the well known logical fact that it
is impossible to argue validly to a contingent conclusion (like M) given a necessarily
true or tautologous premiss. This result, known since Aristotle, is not dependent on a
particulart; any tautology or necessary truth will do.

Of course, the situation so far isnot ignorance, since we have already specified that
we know M is contingent. Suppose instead that somebody asked you, “What is the
probability ofM?" and refused to tell you anything aboutM: it may be contigent, it may
be necessarily true, orM may even be complete gibberish. Thenno probability at allcan
be assigned. If you do assign a probability it is because you areaddinginformation that
was not given to you, information you suppose that is true, but that may be false. The
argument is changed and you cannot say your assignment is based on ignorance.

Some (Bayesian) statisiticians would not like to settle for (2), which is a vague enough
statement aboutM, and would insist that we find some concrete real numberr such that



Pr(M|t,ec) = r. To find this number, there is usually an appeal, to the utterers of (2),
to announce some subjective opinion they might have aboutM, or even about how they
would take bets over the truth ofM. Not all Bayesians would insist that you must say
how you’d bet for or againstM. Some try to findr by an argument like the following:
“Well, M can be true, or it may be false. So it must be that Pr(M) = 1

2." No, it musn’t.
The first sentence to this argument is justt, and nothing has been gained. The step from
the conclusion (M is true) to the probability statement is therefore arbitrary (as many
have felt before; e.g. [7]).

The argument can be modified, by inserting some additional evidence: say,e◦ =“M
is equally like to be true or false", so that we have “e◦, therefore Pr(M|t) = 1

2." This
argument is dogmatic; nevertheless, itis valid; however, the premisse◦ is the same as
the conclusion, which isn’t wrong, but it is begging the question. This is usually and
loosely called a fallacy, but the conclusiondoesfollow from assuming the premises are
true, therefore the argumentis valid: it is just of no use.

People will more likely say “Well,M can be true, or it may be false,and I have
no reason to think that it is false or that it is true. I am indifferent.So it must be that
Pr(M) = 1

2." This kind of argument is sometimes called the “Principle of Indifference,"
advanced by Laplace and Keynes [4] and criticized in e.g. [8]. It is the “indifference" or
“no reason" clause that is the start of troubles.

NO REASON & INDIFFERENCE

The minor premiss in “Both [possibilities forM] are equally likely" is evidently itself
a conclusion from the premiss, “I have no reason to think thatM is false or that it is
true," or “I am indifferent aboutM." Now, this argument, in its many forms, has lead a
happy life. It, or a version of it, shows up in discussion of priors frequently, and also, of
course, in discussions about model selection, e.g. [9]. But it is an argument that should
not have had the attention it did. For we can rewrite it like this: “I do not know—I am
ignorant; I have no reason to know—whetherM is true or false, but it can only be true
or false (thereforeM is true)." The implicit conclusion is usually assigned probability
Pr(M) = 1

2. The argument, I hope you can see, is not valid and the probability statement
is arbitrary. Here’s why. This argumentis valid: “M is true or it is false; therefore, I do
not know—I amignorant; I have no reason to know—whetherM is true or false, but
it can only be true or false." It should now be obvious that this conclusion is nothing
more than a restatement of the initial tautology! To be explicit: saying you do not know
anything aboutM, in English, means youknow nothing, and therefore cannot assign any
probability, not even the bounds of (2). But if you are saying you do not know whether
it is true or false, this is the same as saying that youknowthat it can be true or false, that
is, youknow t∧ec. So, despite our repeated insistence of “ignorance," we areback to
the bounds of eq. (2), which is to say, right where we started.

This leaves “indifference", which isn’t exactly wrong, but it has unnecessary connota-
tions of subjectivity, and, for some, a certain implicationthat the probabilities are equal
(and so begs the question). The subjectivity is implied in the sense that we aresettingthe
probabilities by our will, or that, somehow, our opinions matter as to what the probabil-
ities are (see Franklin [10] for a discussion of how Neyman used a similar trick applied



to interpreting classical confidence intervals).

SYMMETRY

Let M represent the fact that I see a head when next I flip this coin. Are you with the
majority who insist that the probability ofM must be1

2? Before you answer, notice that
the ‘coin flip’ M is entirelydifferent from any otherM′ where all you know is thatM′

is contingent. For example, if instead of a coin flip, supposeM represented the outcome
of an experiment where you to open a box and examine some object inside and note
whether you can see an ‘H’. Now all you know is thatM is contingent and can be true or
false. Basedsolelyon the information you have, you do not know any other possibilities.
You do not know that an ‘H’ or some other letter or object might appear. You do not
know, even, whether a snake may jump out of the box. If you imply that because the
question asked something about an ‘H’, that the result must be ‘H’ or some other letter,
probably a ‘T’, then you areaddingevidence that you werenotgiven.

Back to the coin flip. Why is the probability ofM 1
2? Symmetry, perhaps? As in, “It

can fall head or tail and there is no reason to prefer—I am indifferent—to head over tail"?
But isn’t that the same as ignorance, that is, the same as the tautology and knowledge
of contingency? It is. Because substitute ‘be true’ for ‘fallhead’ and ‘be false’ for ‘fall
tail’ and you are right back at the tautology. Or symmetry as in, “Heads and tails are
equally likely because I have no reason to think otherwise"? Again, “no reason to think
otherwise" or “Heads and tails are equally likely" or “indifference" are begging the
question or can be misleading. The anticlimatic answer for assigning probability to a
definiteM is the statistical syllogism, as defined by Williams [1947] for the coin flip
posed in the familiar form of a syllogistic argument (commonexample of a syllogism:
“All men are mortal, Socrates is a man, etc."):

Just 1 out of 2 of the possible sides are Heads

M is a side

M is a head (3)

This argument, is, of course, invalid in the sense that the conclusion (M is a head)
is not entailed by the premises. But we can assign the probability Pr(M|es) = 1

2 that
the conclusion is true, wherees is the evidence of the two premises (es implies ec).
This probability assignment, made explicit in the form of the statistical syllogism, is
derivedfrom assuming uniform probability across the individual events that make up
the “sample space": see a complete discussion in Stove [15] pp. 92-97, who credits
Carnap [1950] with the first proof of this. In this case, this sides of a coin, or: Pr(H|es) =
Pr(T|es). That is to say, if you are convinced of the probability assigned implied by the
statistical syllogism, you must admit the equi-probability of the underlying events.

Symmetry has often been used, and objected to, as a principleto assign probability,
e.g. [12, 13, 14]. Arguments based on symmetry tend to be misleading because the exam-
ples are always chosen in such a way that they are “physicallybalanaced" or uniformly



symmetric, which gives rise to a certain confusion. For example, Strevens [12] imagines
that one side is painted red on a dodecahedral die and asks theprobability (in a ‘fair’ roll)
of seeing the red side. He assigns 1/12 because of (physical)symmetry. Hájek [14]—and
many, many other authors, invoking something about a “privileged partition"—and ar-
gue that Streven’s assignment is indeed correct under physical symmetry (one partition
of the outcome). But (in another partitioning) they say that you either see the red or you
don’t, so that under this view, the probability is 1/2. Both probability assignments can’t
be right, so logical probability itself must be flawed! Well,the “either see red or not"
is the tautology, which is very different information than physical symmetry: these two
different pieces of information should certainly give different probability assessments,
so it is to logical probability’s credit—and not its detriment—that it does so. And we
have already seen that under the “see red or not" partition (just t ∧ec), the probability
assignment is eq. (2) and not 1/2. Also, all privileged partition arguments have a dis-
tinct subjective quality about them: why choose any partition not based on the statistical
syllogism unless you are intent on creating difficulties where they do not exist?

Again, Streven’s die is physically symmetric, a very strongassumption that is not
needed. Consider this example: suppose I have ann-sided object, one side of which is
painted red: what’s the probability of red? My object may—ormaynot—be physically
symmetric. It may be some amorphous blob, no two sides havingthe same surface area.
It may be physically symmetric down to the quark. But you arenot entitled to say it is
physically symmetric without additional evidence. Just asequally, you do not have any
evidence that my object is physicallyasymmetric. And so, you can only appeal to the
statistical syllogism (“Just 1 side ofn etc.").

WHITHER RANDOMNESS?

Suppose there are 10 men in a room and just 9 of these 10 are Schmenges.M is a man in
the room. The probability that the conclusion “M is a Schmenge" is true by the statistical
syllogism is 9

10. But if you were to grab a man out of the room randomly: how can you be
sure that the probability that he is a Schmenge is9

10? Suppose you were to “sample" the
men by opening the door and grabbing the nearest man and noting whether or not he is
a Schmenge. Or perhaps that doesn’t sound “random" enough toyou. Instead, you order
the men inside to polka madly, to run about and bounce off the walls and to not stop;
then you reach in a grab one. This sampling procedure becomesan additional premise,
er =“Men are arranged in the room randomly."

Here, I take “randomly" to mean, as it can only mean, that “I have no idea—I am
ignorant—of how the men are arranged" [17]. To show this, first suppose thatall we
know is that there are men in a room, butnothingelse. That is, ouronly evidence iser ,
which is just another way of saying, “There are men in the room, and I have no idea
who they are or how they are arranged." Tacit in this is the idea that there may be some
Schmenges in the room, which, of course, means that there maynotbe any. That is,er is
equivalent to, “M may be true or it may be false". This is our old friend, the tautology t,
which we have already seen adds nothing to the argument that would allow us to assign
a definite probability to the conclusion.

It should also not be necessary to say that we do not need to assume anything about



infinite “trials" of men in rooms to arrive at the probabilityof M. Some (objective)
Bayesians try this kind of argument in an attempt justify their priors by invoking some-
thing called thePrincipal Principle, which states

that if the objective, physical probability of a random event (in the sense of
its limiting relative-frequency in an infinite sequence of trials) were known to
be r and if no other relevant information were available, then the appropriate
subjective degree of belief that the event will occur on any particular trial
would also ber: [8, p. 240].

Ignoring the fact that we can neverknow what happens after an infinite amount of
time, and so canknow r, or that we cannot imagine an infinite number of rooms
filled with Schmenges, but pretending that we can, the Principal Principle says
“Pr(M|Pr(M) = r) = r" (it adds the premiss “Pr(M) = r" which is taken to be the
‘objective’ or physical probability ofM), but which we can now see is just begging the
question.

MATHEMATICAL ATTEMPTS

The following arguments start with the definite knowledgee that M is contingent and
can be decomposed into a finite number of possibilities (likecoin flips or rooms of
Schmenges)M1,M2, . . . ,Mn, n < ∞.

First permutation argument (logical probability) [5]: Introduce evidencee which
states that eitherM1 or M2 or etc.Mn can be true, but that only one of them can be true.
In the case whereM is a coin flip, the result can be eitherM1=“head" orM2=“tail". Thus,
Pr(M1∨M2∨ . . .∨Mn|e) = ∑n

i=1Pr(Mi|e). We want to assign the probabilities Pr(Mi|e)
for i = 1. . .n. The set of possibilities isM = {M1,M2,M3, . . .Mn}. Letπ be a permutation
on the set{1,2}. Let M′ = {Mπ(1),Mπ(2),M3, . . .Mn}. That is, the setM andM′ are the
same except the first two indexes have been swapped inM′. The evidencee is fixed.
Therefore, it must be that Pr(M1|e)M = Pr(Mπ(2)|e)M′ and Pr(M2|e)M = Pr(Mπ(1)|e)M′.
Jaynes then makes a crucial step, which is to add evidence toe which states that the
evidence is “indifferent" toM1 andM2, i.e.

if it [the evidence] says something about one, it says the same thing about
the other, and so it contains nothing that would give [us]any reasonto prefer
one over the other. (p. 39, emphasis mine)

Accepting this for the moment,e then says that our state of knowledge aboutM
or M′ is equivalent, including the order of the indexes. Thus, (note the change in
indexes) Pr(M1|e)M = Pr(Mπ(1)|e)M′, Pr(M2|e)M = Pr(Mπ(2)|e)M′ and Pr(M j |e)M =
Pr(M j |e)M′, j = 3, . . . ,n. Which implies Pr(M1|e)M = Pr(M2|e)M: that is to say, equi-
probable prior assignment.

This argument is fine if what Jaynes says in the quotation holds. But we can see in
it the presence of two tell-tale phrases, our old friends, “indifferent" and “no reason",
which are used, and are needed, to justify the final step. Thisis just begging the question
all over again, for how else could the evidencee be “indifferent"? That is, Jaynes has



assumed uniform probability (and thus, the statistical syllogism) as part of the evidence
e, which is what he set out to prove.

Second permutation argument (finite exchangeability) [18]: Space does not permit
a detailed examination of this argument; details will appear in a future paper.

DISCUSSION

Suppose you are consideringM1 andM2 as the only competing models for some situa-
tion. Then, using the statistical syllogism (“JustM1 or M2 etc.") and the logical proba-
bility assignments it implies as above, Pr(M1∨M2|es) = Pr(M1|es)+Pr(M2|es) = 1 and
so Pr(M1|es) = Pr(M2|es) = 1

2. This is the justification for starting with equal proba-
bility in model selection. Afterx is observed, then it is easy (in principle) to calculate
Pr(M1|x,es) and Pr(M2|x,es).

It is no surprise that this is the same point reached by appealing to the Principle of
Indifference, or even the Principle of Maximum Entropy for afinite number of model
choices; Jaynes [5]. The statistical syllogism gives the same answers as the Principle of
Indifference, but not by the same route and, again, without the hidden assumptions or
metaphysical baggage. The built-in question-begging of that principle is gone, and there
is no appeal to subjectivity, which many find so distasteful.

In conversation, I have had it pointed out that the same results as the statistical syl-
logism can be had by appealing the the Principle of Maximum (information) Entopy
(MAXENT), or via other complex mathematical arguments. I agree with this. However,
the additional complex apparatus of MAXENT, with its own setof axioms and assump-
tions, is certainly not needed. The uniform probability assumption over events that is
used to derive the statistical syllogism is just true; but isit also true that the probability
assignmentshouldmaximize entropy? Maybe, but what do we mean by “should"? If
you are trying to convince somebody of the correctness of logical probability, it should
be clear that if you introduce MAXENT at an early stage, you are then asking a lot more
from your audience.

I attempted to cast light on a few common hidden assumptions in the simplest possible
situations. This paper is certainly not a complete answer tothe question of how to assign
probabilities in an objective way in all situations. The statistical syllogism can clearly
be applied to assign priors on probability model parameterswhen those parameters can
take a finite number of values or states. The class of probability models which contain
such parameters may or may not be very large, but it is at leastnot empty, though it of
course does not contain the most frequently used probability models, such as those, say,
from the exponential family. I make no attempt in this paper to justify, or modify, the
use of the statistical syllogism in the case where the numberof outcomes is countably or
uncountably infinte, as in the case of parameters in models like the normal distribution.
[19] is a good starting place for these topics.

But, however simple, the statistical syllogism clearly works and does not suffer
from the same flaws as earlier arguments—arguments which mayhave given the same
answers sometimes, but come loaded with hidden assumptions, assumptions which
have been barriers to acceptance of Bayesian methods. Too, the statistical syllogism
is completely objective and it eliminates any hint of “randomness" and “chance" and the



complexity—and mysticism—that these terms imply. To this,much of this paper may
seem like quibbling. After all, the results using the statistical syllogism agree with those
(at least in these examples) that would be had appealing to “no reason" etc. But this
impression of agreement is false. For one, people who would insist, for example, that all
probability calculations cannot begin before a properly defined measure space has been
carefully laid out, should not quail from a demand for the preciseness of language used in
describing such models. More importantly, the terms “no reason" etc. are all improperly
defensiveand are negative. Using them with respect to assigning probabilities naturally
creates a certain suspicion in those who hear them that something funny is going on.
The terms also over-emphasize, and even use when they shouldnot, subjectivity. With
the statistical syllogism, these problems disappear. For one: there is no subjectivity; the
probability assignment follows logically from the information given. And the statistical
syllogism emphasizes thedefinite, positiveknowledge that exists (such as contingency
and know number of possible outcomes). People, I believe, would be more inclined
to to try to understand Bayesian methods (and be made aware of the multitude of
shortcomings of classical probability) if we who promote them are more careful—and
justifiably positive—in our language.
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