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2 INDUCTION AND FALSIFIABILITY IN STATISTICS

Summary: The importance—and rationality—of inductive arguments

and their relation to the frequently invoked, but widely and poorly

misunderstood, notion of falsifiability are explained in the context of

statistical models. We remind readers that no probability model can be

falsified. Both frequentists and Bayesian must use inductive arguments.

This includes arguments for the use of p-values and those given in model

selection and for the creation of goodness of fit measures. Since only

Bayesian theory is equipped to put probabilities on the conclusions of

inductive arguments, we argue that even frequentists are Bayesians at

heart.

Key words: Falsifiability; Fisher; Induction; Model complexity; Model

selection; Occam’s razor; P-values; Popper (Karl); Skill score.
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1. Introduction

Everybody knows that

Because all the many flames observed before have been hot (1)

that this is a good reason to believe

that this flame will be hot. (2)

At least, we have never met anybody who would be willing to put his

hand into a bonfire. Yet there are statisticians, who will, on the pain

of logical consistency, be forced to claim that (1) is not a good reason

to believe (2); and not only that, but also that there is no reason to

believe (2).

The argument from (1) to (2) is inductive, which is an argument from

contingent—not logically necessary—premisses which are, or could have

been, observed, to a contingent conclusion about something that has

not been, and may not be able to be, observed. An inductive argument

must also have its conclusion say about the unobserved something like

what the premisses says about the observed. The word ‘like’ is suffi-

ciently ambiguous, but this has never troubled philosophers who know

an inductive argument “when they see one” (Stove, 1982) (the stark

way the flames argument is presented, and the succinct definition of

contingent, are entirely due to Stove (1986)).

The argument from (1) to (2) is also invalid in the strict logical sense

that the premiss does not entail the conclusion. Validity means only
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that the conclusion is logically entailed by the premisses; invalid does

not imply unreasonable. This should be obvious from the example,

because it is possible that the next flame we come upon will not be

hot, even though all the other flames we have ever experienced have

been. The universe is not set up such that, logically, all flames will

necessarily be hot.

Regardless of the common sense of (2), the early part of the 20th

century saw the growth and dispersal of the belief that all inductive

arguments are unreasonable. The philosopher most responsible for this

view was Karl Popper (Theocharis and Psimopolos, 1987; Gross and

Levitt, 1994). Popper asked, “Are we rationally justified in reason-

ing from repeated instances of which we have experience [like the hot

flames] to instances of which we have had no experience [this flame]?”

His answer: “No” (Popper, 1959). This extreme skepticism has un-

derstandably not been accepted by many philosophers (Carnap, 1950;

Haack, 2003; Theocharis and Psimopolos, 1987; Williams, 1947; Stove,

1982), but as we shall see it has been, at least in some form, by statis-

ticians and probabilists.

Popper convinced many that since induction could not and should

not be trusted—because it might lead to an invalid conclusion—only

deduction should be used in scientific inference. Since it is difficult

to prove things deductively, Popper therefore claimed that the mark

of a scientific theory is that it can be falsified; theories that could
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not be were said to be metaphysical or not scientific. Now, the term

falsified has a precise, unambiguous, logical meaning: that something

was shown to be certainly false. Despite this simple definition, there

have developed many odd, and incorrect, interpretations of this word

in our community, which we detail below.

First, the falsifiability criterion is obviously useless for theories that

are true (such as in math) and therefore cannot be falsified. Falsifiabil-

ity is also useless with statistical arguments. This is because they use

probability statements which cannot be falsified, and therefore are, in

Popper’s scheme, metaphysical.

No model or theory that makes a probability statement (between 0

and 1) can be falsified because there can exist no set of observations

which are logically inconsistent with any probability statement. An

example, ”This logistic regression model says the probability of rain

tomorrow is 0.9.” Either observation, rain or now, is logically consistent

with that statement. It cannot be falsified.

Popper called the incommensurability of probability statements and

falsifiability the “problem of decidability” and left it at that. Readers

might like to recall David Hume who disliked this “custom of calling

a difficulty what pretends to be a demonstration and endeavoring by

that means to ellude its force and evidence” quoted in Stove (1982, p.

66).
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Fisher, though certainly not of the same skeptical bent as Popper—

he often talked about how scientists used inductive reasoning, though

he wasn’t always entirely clear by what he meant by inductive (Fisher,

1973b,a)—agreed in principle with the Popperian ideas and used these

beliefs to build his system of statistics. For example, theories could

only be “rejected” and never verified (and so on). Neyman of course

followed suit with that central idea.

Our purpose is not to prove that inductive inferences are reasonable,

because that has already been done by others. We merely want to show

that the reasoning behind most statistical methods, and certainly those

of model selection, is inductive. We thus show that falsifiability is of

little or no use. The implications for both of these statements might

be somewhat surprising.

2. Common Arguments

Here is a typical, schematic, newspaper headline: Broccoli reduces

risk of splenetic fever (SF). The reporter who wrote the headline might

have have been reasoning from an argument like the following:

Broccoli either reduces risk of splenetic fever or it

does not

Broccoli reduces risk of splenetic fever.

(3)
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The premise is a tautology: it is necessarily true regardless of any

state of the world. A well known principle of logic states that it is

impossible to argue from a tautology or necessary truth to a contingent

conclusion. That is, (3) is an invalid argument, and it is not inductive.

Headlines like ours typical arise from a reporter reading a medical

journal which discuss evidence from an experiment or observation on

fixed group of people. Thus, the reporter may have been arguing:

More people in this study who did not eat broc-

coli got splenetic fever than did people who ate

broccoli.

Broccoli reduces risk of splenetic fever.

(4)

The stated premiss was, obviously, one of the facts reported in the

medical journal. But there are at least two hidden premisses our re-

porter used whether he knew them or not: (i) that splenetic fever is

unambiguously diagnosed, and (ii) that the facts in the medical jour-

nal are accurate. We will assume that these, and other similar hidden

premisses, are unimportant or do not conflict with the major premisses

or conclusion.

Now, (4) may be valid or invalid depending on whom broccoli reduces

the risk and what “reduces risk” means. If the who is “the people in

the study” and “reduces risk” means “less people who ate broccoli
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get splenetic fever”, then (4) is valid, but it is merely a tautology

that restates that, in this group of people, fewer who ate broccoli got

splenetic fever.

Statisticians do not go to the trouble of tabulating results in medical

studies for just the group of people experimented upon, do they? They

claim to want to say something about people who are not part of that

group. To make this specific, the conclusion in (4) should be modified

to state that broccoli (B) reduces risk of splenetic fever (SF) for

for this group such that Pr(SF|B) < Pr(SF|No B) (5)

or to read

for people not in this group. (6)

The addendum (5) says something about the current group of people,

but it says something about an unobservable characteristic of these

people, a characteristic usually indexed or represented by a parameter

of a probability distribution. (6) makes a prediction about the presence

or absence of splenetic fever for people not in this certain group.

Either addendum, (5) or (6), keep (4) invalid, but both also make it

inductive. The newspaper headline is certainly implying either (5) or

(6) or both (it may be implying (5) for future groups of people).

Most statistical results are like this. That is, it is not clear whether

the author’s are saying something about unobservable characteristics
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of their group of patients or making predictions about future groups of

people. The distinction, however, is hardly ever noted.

It’s especially critical to understand that whatever the headline means,

it is certainly based on an inductive argument. This is true even if

the medical journal’s authors were scrupulous in their use of classical

statistical methods, and were thus careful to say that it is impossi-

ble, based on those methods, to support any positive conclusion about

broccoli and splenetic fever. Civilians, like our reporter, just do not

understand the idiosyncratic and confusing interpretations of p-values,

null hypotheses, and confidence intervals, and they are almost cer-

tainly going to go away from a journal believing that the evidence just

gathered actually meant something directly about the hypothesis of

broccoli reducing the risk of splenetic fever. Well, so what? You can

argue (incorrectly, we think) that we cannot be responsible for what

civilians do with statistics. But what about statisticians themselves,

who do understand the complexities of classical analysis that know,

say, “long-run” is a euphemism for “infinity,” and so on? What about

their arguments?

3. Popper and Statisticians

Here are some quotes with which the reader might not be familiar:

(a) “We have no reason to believe any proposition about the unob-

served even after experience!”
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(b) “There are no such things as good positive reasons to believe any

scientific theory.”

(c) “The truth of any scientific theory is exactly as improbable, both

a priori and in relation to any possible evidence, as the truth of a

self-contradictory proposition” (i.e. It is impossible.)

(d) “Belief, of course, is never rational: it is rational to suspend belief.”

The first is from the grandfather of inductive skepticism, David Hume

(2003). The others are all from Karl Popper (1959; 1963). These quo-

tations are important to absorb, because most of us haven’t seen them

before, and because of that, a lot of misperceptions about Popper’s phi-

losophy and its derivatives are common in our field. To first show the

extent of Popper’s influence, we can look to what statisticians say on

these topics. Now, much of our lore is found in the oral tradition, and

some is found in journals, so we chose material from both. We selected

these quotes solely because they represent commonly-held opinions and

were made by justly respected leaders in our field.

(A) “‘[I]nduction doesn’t fit my understanding of scientific (or social

scientific) inference.”

(B) “Bayesian inference is good for deductive inference within a model.”

(my italics)

(C) “I falsify models all the time.”
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(D) “[T]he probability that the ‘truth’ is expressible in the language

of probability theory...is vanishingly small, so we should conclude

a priori that all theories are falsified.”

(E) “[P]assing such a test does not in itself render [a] theory ‘proven’ or

‘true’ in any sense—indeed, from a thoroughgoing falsificationist

standpoint (perhaps even more thoroughgoing than Popper him-

self would have accepted), we can dispense with such concepts

altogether.”

(F) “A theory that makes purportedly meaningful assertions that can-

not be falsified by any other observation is ‘metaphysical.’ What-

ever other valuable properties such a theory may have, it would

not, in Popper’s view, qualify as a scientific theory.”

It isn’t hard to search for more examples like this, and there is no reason

to hunt for more because these will ring true enough. The first four

quotes are from Andrew Gelman’s Columbia statistics blog (2005); Dan

Navarro wrote the fourth on that blog (2005); the last two are from a

review paper on Popperism in statistics by (Dawid, 2004, a paper that

also contains the line “Causality does not exist”).

(A), we trust, is true, but it is not a statement of logic. The other

comments are, or they contain logical statements. They are all false

(the second sentence in (F) is a matter of fact and is true). Before we
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prove these claims, let us summarize how Popper came to believe what

he did, and how these views became common in statistics.

Hume (it was he who supplied the flames example which started

this paper) was the first to rigorously study the invalidity of inductive

inferences (Hume, 2003). Further, he was the first to show that there

was no way to remove an inductive argument’s invalidity: he proved

that no additional, necessarily true or contingent, premisses could be

added to the original premisses that would make a given inductive

argument valid. This conclusion is known as inductive fallibilism, and

is nowhere controversial.

Hume then made an additional step and claimed to have shown that,

not only are inductive arguments fallible, but that they were also always

unreasonable. Stove (1982) showed that this skeptical conclusion was

shown to hinge on two main premisses: (i) inductive fallibilism, and

(ii) deductivism, which is the premiss that all invalid arguments are

unreasonable. Popper argued that since inductive arguments are not

valid, they are all unreasonable—including the flames argument which

started this paper.

Nobody disputes inductive fallibilism. How about deductivism? The

flames argument is inductive, therefore invalid, but by deductivism it is

unreasonable to believe that future flames will be hot. Hume assumed

that deductivism was true, but there is no evidence that it is, nor was
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any argument put forward to defend it; it is taken by him, and by

Popper, to be axiomatic.

Popper took inductive skepticism as his starting point. Given that

the only inferences that are reasonable are deductive ones, and because

it is impossible to argue from a necessary truth to a contingent con-

clusion, and all matters of fact are contingent, it becomes impossible

to argue directly for the truth of any real-world theory. The best that

you could do is to argue negatively against it: that is, if some theory

implied that “X” is true, and you directly observed “¬X” (not X),

then you could conclusively say that the theory was false. But that

was all you could do. You could never say the theory was true, or how

likely it was to be true, or whether it was reasonable to believe a theory

that was “not yet” falsified, and so on. This view lead Popper to say

things like this, “Theories must be falsifiable to be ‘scientific’” and “It

is a vice and not a virtue for a model to be infallible.”

This reasoning made sense to Fisher, who tried to build falsifiability

into his p-values. Where that got us as a field, by now everybody

knows. However, as we show below, and as everybody already knows, p-

values cannot falsify a theory; and theories based on probability models

cannot be falsified, e.g. Gillies (1971) and the refutation by Spielman

(1974) and others. It may come as a slight surprise to learn that

any attempt at using a p-value actually forces its user into making an

inductive argument, which are the very things that so horrified Popper.
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4. Induction and Falsifiability in Statistics

Here are two well-known staples of logic (Adams, 1998):

p −→ q p −→ q
p ¬q

q ¬p

The first is modus ponens, and is read “If (the proposition or predicate)

p is true, then (the proposition or predicate) q is true (or is entailed).

p is true. Therefore, q is true.” The second, modus tollens, is read “If

p is true, then q is true. q is false. Therefore, p is false.” It is these

two classic forms, and especially the second, that so enamored Popper.

Modus ponens, incidentally, transforms from deductive to inductive by

replacing the second premiss to “q”.

A statistical model (or theory, or hypothesis) M that is truly falsified

would have a (valid) argument something like this (we take, without

further elaboration, a model M to be the kind of thing that makes

statements like “M −→ q,” where M is not observable; we say nothing

about where models come from):

M −→ P (X > 0) = 0
X > 0

¬M

(7)

which is read “Model M entails that the probability of seeing an (ob-

servable) X greater than 0, is 0; that is, if M is true, it is impossible



INDUCTION AND FALSIFIABILITY IN STATISTICS 15

that X > 0. We saw an X > 0. Therefore M is false.” This is ideal

when it happens, as M is deduced to be false—it is falsified—but this

situation occurs rarely in practice, and never does in probability mod-

els. Consider instead this more common argument:

M −→ P (X > 0) = ε > 0
X > 0

¬M

(8)

which is read “Model M entails that the probability of seeing an (ob-

servable) X is small, as small as you like, but still not zero; that is,

it is merely improbable but not impossible to see an X > 0. We saw

an X > 0 (even a microscopically small X). Therefore M is false.”

This argument is not valid, but it is inductive because, of course, no

matter how small P (X > 0), an X > 0 might still happen and, when

and if it does, this observation is not inconsistent with M . It is no

good, if you are no fan of induction, rebutting with something on the

order of, “Yes, an X > 0 is not strictly inconsistent with M , but the

probability of seeing such an X given that M is true is so small, that

if we do see X > 0 then M is practically falsified.” The term “practi-

cally falsified” has the same meaning as “practically a virgin.” If you

insist on something being “nearly” or “practically falsified”, then you

are making an inductive judgment about M , and there is no disguising

that fact. Further, if you choose some cutoff, some particular ε, it can
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be shown that you are also putting a measure of logical probability on

the inductive inference for the falsity of M (Jaynes, 2003).

Here is an example which is in fact a valid argument: “[For a series

of fair coin flips with M: P (Xi = H) = 0.5, T]he theoretical event

n−1

n∑
i=1

Xi → 0.5

has M-probability 1. Hence, as a model of the physical universe, M

could be regarded as falsified if, on observation, the corresponding

physical property, the limiting relative frequency of H in the sequence

of coin-tosses exists and equals 0.5, is found to fail” (Dawid (2004);

second italics ours; original had “P” instead of “M”).

This argument is valid, but it is also impossible to fulfill in practice

because of the “on observation” modifier. Nobody will ever live to

see whether the actual limiting frequency of tosses does exist and does

falsify M (this was what Keynes was getting at with his “In the long

run we shall all be dead” quip). Stopping at any finite value of tosses,

no matter how large, only buys you “practically falsified”, which is to

say, not falsified. Stopping anywhere and claiming M is not valid is the

result of making a decision based on an inductive inference.

Most probability models are put into service to say things about

unobservable parameters (call them θ). Here is one possible argument

about M0 and a θ, where M0 is a “null” model or hypothesis of some
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kind, and θ > 0 is an index for a test, say the hypothesis where the

central parameters for two normal groups are equal θ = θ1 − θ2:

M0 −→ P (θ > 0|X) = 0

P (θ > 0|X) = ε > 0

¬M0

(9)

The argument is read, “If M0 is true, then after I see the data X the

probability of θ > 0 is 0; that is, if M0 is true it is impossible that

θ > 0. The actual probability, after seeing X, is P (θ > 0|X) = ε > 0.

Therefore, M0 is false.” This is a valid deductive argument. Certainly,

arguments like this can be made for many, if not all, probability models.

If this kind of argument is what the writer’s from (B) and (C) had in

mind, then we were wrong and people really are routinely engaged in

valid falsifications. And it may even be true, or “true” as (D) or (E)

have it, that all models are a priori falsified (a claim that actually

begins the paper by Dennis and Kintsch (2006)). Incidentally, Fisher

himself used scare quotes for the word true (Fisher, 1980, p. 334).

However, it is clear that conclusions of this type are not what our

writers do have in mind. For we can reword the conclusion as “It is

not impossible that θ > 0; that is, it is false that I know for a fact,

without any uncertainty, that θ1 > θ2.” So “¬M0” merely means “I

am not certain that θ1 > θ2”, and that is all we have gained from this
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argument; which is to say, we have gained nothing because that is what

we knew before we started our experiment.

Statisticians are not interested in models likeM0, because probability

models start with the tacit assumption that “I am not certain that

θ1 > θ2.” This was why, after all, we collect data in the first place.

The tacit assumption is certainly true for the ubiquitous normal model

where, no matter what finite set of data is observed, we can never be

certain that “θ1 > θ2” is true or false. The uncertainty is forever built

in right at the beginning, and the only way around it is to design a new

probability model where, in fact, it is possible to have it certain that

θ1 > θ2. But once that is done, it is hard to see how any data would

change that fact.

It is also false that all models are a priori falsified. Presumably,

for all observation statements q, there is a true model MT . It may

be, and is even likely, that we will not accurately identify MT . This

does not mean that MT is falsified, because, of course, it is true. The

best we can do, perhaps, is to identify a set of useful models, none of

which are equivalent to MT (see the discussion in Bernardo and Smith

(2000), chap. 6, on “M -closed” vs. “M -complete” vs. “M -open”). It

follows that if we knew that these models were not equivalent to MT ,

then we would know that the models in the useful set are falsified;

in fact, they are all falsified. But if we knew these models were not

equivalent to MT , then we would know MT , and it is, again of course,
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impossible to falsify what is true—and we wouldn’t even bother with

creating the useful set, unless we were interested in creating, say, a

computationally-simple approximation to MT .

Again, we usually do not know, with certainty, MT . So we cannot

say, with certainty, that the models in the useful set are false. It may

be that some models in the set are more useful than others, and to any

degree that you like, and this may be all we can ever learn (more on

this below). But they cannot, a priori or a posteriori, be falsified.

Lastly, it worth pointing out that it is not true that we can never

know MT , else we could never, for example, create simulations (also

pointed out in Bernardo and Smith (2000, p. 384)). Also, of course,

statistical journals are filled with instances where MT is known: all

theorems fall into this category.

The reader must also remember what was pointed out in Section 1:

no model that makes a probability statement (between 0 and 1) can

ever be falsified—nor proved true—because no set of observations will

ever be inconsistent with the probability statement. For example, if a

model says the probability of rain is 0.01 but it does in fact rain, the

model is not falsified because the occurrence of rain is not inconsistent

with the probability statement. Naturally, all evidentiary (non simu-

lation) models that interest us statisticians are probability models, so

none can ever be falsified.
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The classic argument against—but, according to Fisher, never for—a

model is:

M0 −→ 0 < p-value < 1
p-value is small

¬M0

(10)

which is read, “The (null) model M0 entails that we see a uniformly-

distributed p-value. We see a p-value that is publishable (namely,

< 0.05). Therefore, M0 is false.” This argument is not valid and it

is not inductive either because the first premiss says we can see any p-

value whatsoever, and since we do see any value, it is actually evidence

for M0 and not against it. (Actually, if the conclusion were M0, the

argument would be inductive!) There is no p-value we could see that

would be the logical negation of “0 < p-value < 1”; well, other than 1

or 0, which may of course happen in practice with small samples (e.g.

a test for differences in proportion from two groups, where n1 = n2 = 1

and where x1 = 1, x2 = 0, or x1 = 0, x2 = 1). When this does happen,

then regardless whether the p-value is 0 or 1, either of those values

legitimately falsify M0!

Importantly, the first premiss of (10) is not that “If M0 is true,

then we expect a ‘large’ p-value,” because we clearly do not. But the

argument would be valid, and M0 truly falsified, if the first premiss were

“M0 −→ large p-value,” but nowhere in the theory of statistics is this
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kind of statement asserted, though something like it often is. (Fisher,

1970, for example) was fond of saying—and this is quoted in nearly

every introductory textbook—something like this (using our notation):

Belief in M0 as an accurate representation of the

population sampled is confronted by a logical dis-

junction: Either M0 is false, or the p-value has

attained by chance an exceptionally low value.

(11)

His “logical disjunction” is evidently not one, as the first part of the

argument makes a statement about the unobservable M0, and the sec-

ond part makes a statement about the observable p-value. But it is

clear that there are implied missing pieces, and his quote can be fixed

easily like this:

Either M0 is false and we see a small p-value, or

M0 is true and we see a small p-value.

(12)

Or just:

Either M0 is true or it is false and we see a small

p-value.

(13)

Since “Either M0 is true or it is false” is a tautology, we are left with

We see a small p-value.

(14)
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Which is of no help at all: the p-value casts no direct light on the truth

or falsity ofM0. This result should not be surprising, because remember

that Fisher argued that the p-value could not deduce whether M0 was

true; but if it cannot deduce whether M0 is true, it cannot, logically,

deduce whether it is false; that is, it cannot falsify M0. However, a

small p-value is taken to be by all civilians, and most of us, to mean

“This is evidence that M0 is false.” But that is an inductive argument

like this:

For most small p-values I have seen in the past,

M0 has been false.

I see a small p-value and my null hypothesis is M0

¬M0

(15)

This inductive argument has seen success because p-values have been

of some use, but it is probably because, in simple situations, p-values

are reasonable approximations to (functions of) probability statements

of hypotheses like “θ1 > θ2 given X”, e.g. Berger and Selke (1987).

Obviously, substituting a Neyman-like fixed p-value does nothing to

change the argument: any finite set of data or decisions means an

inductive argument has been used.
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You may also try to salvage (10) etc. by starting with Ma (or with

¬M0), which is some alternate hypothesis that is not the null hypoth-

esis. But then, of course, you cannot say anything about a p-value.

5. Model Selection

How many models are there for any given set of data? To answer

this, Quine (1951, 1953) put forth his underdetermination thesis, which

is roughly: for any given model M , there will be an indefinite number of

other models which are not M , but which are equally well supported

by the evidence as M is. This thesis is far from agreed upon (List,

1999; English, 1973; Haack, 2003). But whether or not it is true, it is

a fact that people have often used different, non-equivalent, models to

explain or predict the same set of observation statements. There is also

the argument by Kripke that any sequence of numbers has an infinite

number of ways the sequence could have been generated (Kripke, 1982;

Maddy, 1986)—a thesis which, if true, means that each different way

explains and predicts the observed sequence perfectly. Again, whether

that statement is true, it is again a fact that at least for some sequences,

there exists more than one way to generate them.

Evidently, for any set of data x1, x2, . . . , xn, (of any dimensionality)

the model MΩ exists and says, with a straight face, that we would have

seen just what we saw, namely x1 first, x2 second, and so on. Though,

conveniently, MΩ never reveals itself until after the data comes in: it
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just always says, unconvincingly, and after the fact, “I knew it!” (It

was real-life examples of unfalsifiable models like MΩ—he mentioned

Freudianism and quack medicines as examples—that so rightly irritated

Popper.) So an argument for MΩ might be:

MΩ −→ x1, x2, . . . , xn

x1, x2, . . . , xn

MΩ

(16)

This is read, “If MΩ is true, we will see the data x1, x2, . . . , xn, which

we do in fact see. Therefore, MΩ is true.” This argument is not valid,

but it is inductive and is some evidence for the truth of MΩ in that

sense. It is also an argument, because of the second premiss, only

about the already observed data. It says nothing directly about future

xs, though it can, of course, be applied to them. Our experience with

such complex, over-fitted models can be best stated in the following

argument:

Of all the many models in the past, simpler ones

usually turned out better than complex ones;

There is an MΩ, and there is at least an M2 6= MΩ;

Complexity(MΩ) > Complexity(M2).

M2

(17)
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This argument is invalid but inductive and is, of course, one version

of Occam’s Razor. It is also sufficiently vague because of the terms

better and complexity. Better certainly does not mean “fits the data

well”, because nothing would ever fit the observed data better than

MΩ, which of course fits without error. It may mean “predicts future

data well”—it has to be future data, because MΩ predicts the present

data perfectly too (see Spiegelhalter et al. (2002); Arjas and Andreev

(2000) for some measures of fit).

Ignore, for a moment, complexity and consider this argument:

M2 −→ Score(MΩ) < Score(M2) in future data

Score(MΩ) < Score(M2) in future data

M2

(18)

which is read, “If M2 is true, then the prediction score (or negative mea-

sure of loss, or utility, or skill, or whatever, but where higher scores are

better) for MΩ will be less than that for M2. The score was lower for

MΩ, therefore, M2 is true.” This argument is again invalid but induc-

tive, because no finite set of data, and the score based on them, would

insure with certainty that Score(MΩ) is always less than Score(M2).

Suppose, then, better in (17) means at least “predicts future data

well.” Complexity usually means something like “effective number of

parameters” or “dimensionality of θ”, which are close enough for us

here. All this does is change the first premiss of (17) to
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Of all the many models in the past, ones with

fewer (effective) parameters usually predict future

data better (give higher scores) than models with

more (effective) parameters.

(19)

The conclusion remains the same, and the argument is still inductive.

It is thus easy to see how the popular model selection criteria AIC and

BIC are, at least partially, based on inductive arguments (Wasserman,

2000).

6. Concluding Remarks

The importance of the examples of this paper are to prove to the

reader that inductive arguments are not only common, but necessary

and inescapable. Users of Bayesian statistical methods will no doubt

be familiar with this, but frequentists will not. Few frequentists will

have considered that the main argument for the use of a p-value is

based on an invalid, inductive argument. Those who use p-values in

the informal sense, as in (15), are tacitly using an inductive argument;

that is, they are arguing exactly oppositely as Fisher (and Popper)

intended. In short, they are reasoning like Bayesians, but are reaching

the conclusions the hard way, to say the least. Since this is the case, it

is a strong argument against the use of frequentist methods in actual

practice. Certainly their use and dissemination should be limited.
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Readers must remember that when they say that a model is falsified

they are making the strongest possible statement, equivalent to that

made in a mathematical proof. It means that, by deduction, they have

proven the model is false. Any probability a model is true that is

greater than 0 and less than 1 means that has not been falsified. If

somebody declares “close enough”, they have made a decision based

on the probability, but they have not proven anything. And, of course,

methods for how to do this are well developed.

We all know the aphorism by George Box: “Remember that all mod-

els are wrong; the practical question is how wrong do they have to be

to not be useful.” We can now see that this statement, taken literally,

is false. One way to interpret the results of Section 5 is that there is no

formal solution to the problem of model selection. By formal, we mean

that a procedure that could be followed, in finite time, that would al-

low the true model to be deduced, that is, known with certainty, and

would allow incorrect models to be falsified. We must also remember

that there may be two or more models that explain and predict any

set of observations perfectly or to the same level of goodness: so that

the only way to judge between competing models in this set would be

to appeal to other, outside criteria, whatever these may be.

Models are rarely considered in isolation. When deciding on the

truth or falsity of a given model, we often make reference to what

this judgment would mean to our belief in other models and theories.
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Haack’s (2003) crossword puzzle metaphor about how all models fit

together in painting a picture of reality is relevant. One model supplies

the answer to, say, 1 Down, and this answer must be amicable with

at least 1 Across, and so on; keeping in mind the size of the puzzle is

large and its boundaries somewhat amorphous.

The arguments used in the course of probability modeling and model

selection are inductive (mathematical models/theorems are found in-

ductively, too (Polya, 1968)). But the careful reader will have noticed

that nowhere did we attach a probability measure to any of the con-

clusions of the inductive arguments given above, because inductive ar-

guments are not probability statements. Probabilities can certainty be

found for these conclusions—p(θ|x), p(y|x) =
∫
p(y|θ, x)p(θ|x)dθ, and

so on are common examples. Deductive and non-deductive arguments,

including inductive ones, are matters of logic, which is what led Carnap

(1950); Jaynes (2003); Keynes (2004) to say that probability statements

about their conclusions must be statements of logical probability. This

is an undeveloped area in statistics, but it is of fundamental impor-

tance, because it is directly applicable to the nature of probability and

to what probability models actually say.

A recent example is a fascinating paper by Wagner (2004) that gives

limits of a probabilized version of modes tollens, which gets at what

people mean when they say ‘practically falsified.’ In that paper (and

in my notation), he shows that if p(q|M) = a and p(¬q) = b, then
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p(¬M) → 1 as a, b → 1, and also as a, b → 0. Typically, a = 1, 0 ≤

b < 1, and if so, then b ≤ p(¬M) < 1. Wagner also shows that these

are the best bounds possible.
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