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Summary: Should healthy, middle-aged women receive precautionary
mammograms? Should trauma surgeons use the popular TRISS score
to predict the likelihood of patient survival? These are examples of
questions confronting us when we decide whether to use a Yes/No
prediction. In order to trust a prediction we must show that it is more
valuable than would be our best guess of the future in absence of the
prediction.

Calculating value means identifying our loss should the prediction
err and examining the past performance of the prediction with respect
to that loss. A statistical test to do this is developed. Predictions that
pass this test are said to have skill.

Only skillful predictions should be used. Graphical and numeri-
cal methods to identify skill will be demonstrated. The usefulness of
mammograms is explored.
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1. Introduction

We are concerned with testing the hypothesis of skill of Yes/No predictions for

dichotomous events. The terms prediction, forecast, diagnosis, and prognosis are used

interchangeably in this paper. Skill can be defined solely as accuracy or instead as

value. Accurate predictions have a small probability of error while valuable predic-

tions minimize risk (expected loss). Thus, value depends upon both accuracy and the

costs of prediction errors.
1
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Skill testing has many potential uses and, in particular, is important for deciding

when to use diagnostic procedures in medicine. As Gigerenzer (2002, pp. 55-86) dis-

cusses, medical diagnostics such as mammogram screening of asymptomatic women

may have less value and possibly less accuracy than the naive forecast (always pre-

dicting no disease), depending on the costs of false positives and negatives and their

probabilities. This is true even if the sensitivity (probability of a positive given dis-

ease) and specificity (probability of a negative given no disease) are very high (Berry,

1998, 2002; Bluman et al., 1999). The asymmetry of the error loss and the genuine

(and often ignored) importance of the false positive costs are returned to latter in

Section 5 (Thorne et al., 1999). Asymmetric losses are often used, however, in clas-

sification problems (e.g. Hastie et al., 2001) where their motivation has traditionally

been stronger.

Tests have been developed for comparing competing predictions in specific applica-

tions. Parker and Davis (1999) specifically address testing the efficacy of predictions

in medical contexts, a topic pursued here. Diaconis (1978), Diaconis and Graham

(1981), and Diaconis and Mosteller (1989) give a formal hypothesis test of skill for

card guessing experiments with feedback. Hamill (1998) showed how to use simple

statistical tests to evaluate quantitative precipitation predictions. Diebold and Mari-

ano (1995) and Diebold (2001) develop a test based on the mean squared error (MSE)

score for continuous-valued observations. Kolb and Stekler (1993) have a test that

is similar to the MSE test. Briggs and Levine (1998) use the bootstrap to test for

a difference in prediction accuracy. But, overall, relatively little has been done to

develop formal tests of skill. Mozer and Briggs (2003) first introduced a simplified

presentation of the skill score given below; a full theoretical treatment is given here.
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Much more work has been done on prediction verification, most notably by Murphy

(Murphy, 1991; Murphy, 1997; Murphy and Winkler, 1987; Murphy and Ehrendorfer,

1987; Ferrell, 1994; to name only a few). Many others have also contributed to this

field (for example, Meeden, 1979; Solow and Broadus, 1988), but the key concept we

use here is due to Murphy and Winkler (1987), which is that the joint distribution

of the observations and predictions provide the framework for a complete verifica-

tion analysis. Specifically, for an i.i.d. sequence of dichotomous predictions (X) and

observations (Y ), we model this joint distribution using a calibration-refinement fac-

torization of the probability density (namely: P (Y,X) = P (Y |X)P (X), where Y

represents the observation and X the forecast; see Murphy, 1994). We assume that

prediction and observation pairs are independent and therefore non-dynamic in the

sense that future predictions do not depend on previous events or previous predic-

tions. In a separate paper, we relax the independence assumption and allow the

observations to be a first-order Markov chain (Briggs and Ruppert, 2004). Work in

modeling precipitation series as Markovian was done, for example, by Wilks (1991).

Two concepts should be distinguished: prediction accuracy and prediction value.

Analysts have long recognized that predictions can be accurate (having a high pro-

portion of correct predictions) but without value. Likewise, a prediction might have

low accuracy but still possess value. The distinctions between these two concepts

are laid out in, among other places, Murphy (1991), Thompson and Zucchini (1990),

Murphy and Winkler (1987), and Murphy and Ehrendorfer (1987). We shall show

how the the concepts of value and accuracy combine to define skill.

In Section 2 we start with the simplest case and define the optimal naive prediction,

XN , of a binary Y to be the optimal prediction knowing only the unconditional

probability of the event, Y . By expert we mean any prediction not the optimal naive
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prediction. Skill of an expert prediction, XE, over XN is defined in two ways. We

assume no loss for accurate forecasts: loss (or cost) for accurate forecast is easily

added to our framework, though we don’t do so here (see Briggs, 2004; Katz, 1993).

Skill scores of these tests are formed in Section 3; their relation to the popular Brier

score is also shown there. The new skill score is simple to calculate, which should

ease its acceptance. We compare the skill test to the usual test for independence in

Section 4; we also show how these two tests relate to the test developed in Parker

and Davis (1999).

Examples of each test of skill and of the corresponding skill scores are given in

Section 5 where medical diagnoses data of Parker and Davis (1999), mammogram

screening data of Gigerenzer (2002), and data on the TRISS model (Boyd et al, 1987)

used in trauma research are analyzed. Section 6 presents concluding remarks and

suggests new lines of research.

2. Basic Test

We are concerned with binary Y . Predictions for Y can be either dichotomous

(X̃ ∈ {0, 1}) or probabilistic (X̃ ∈ [0, 1]), but we only consider decisions based on

dichotomous predictions.

We follow the notation developed in Schervish (1989). Let Yi ∈ {0, 1} designate

the ith observation of a dichotomous event. Using the function loss kyx, let the losses

k11 and k00 of correct decisions equal 0. The finite loss k for making an error can

always be quantified such that the total loss is normalized to 1, so that with Y = 0

and decision d1 the loss can be written as some k01 = θ < 1, which implies that with

Y = 1 and decision d0 the loss is k10 = 1− θ.
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The decision maker minimizes the expected loss and makes decision d1 whenever

X̃ ≥ θ or makes decision d0 if X̃ < θ, where X̃ indicates a (possibly probabilistic)

expert prediction. The loss for an expert prediction can be now written as

(2.1) k = θI(X̃ ≥ θ, Y = 0) + (1− θ)I(X̃ < θ, Y = 1).

(A user might not choose this decision rule and instead pick X = I(X̃ > h) for some

h ∈ (0, 1), h not necessarily θ. Users may do this if they believe, for example, that

the forecast is not calibrated (McClelland and Bolger, 1994). The work below does

not depend on the particular decision rule, though the θ rule is used as a reference.)

Skill will be framed in terms of expected loss (risk). A collection of predictions has

skill if its expected loss is less than that of the optimal naive predictions. (Typical

definitions of skill, e.g., Wilks (1995), refer to skill as relative accuracy of an expert to

a naive prediction, a distinction used when developing skill scores below.) The naive

information we have about Y is that we know P (Y = 1), the unconditional probability

of occurrence, so that skill, if it exists, is known as simple, base rate, or climate skill

to reflect the idea that the expert prediction can beat the simple prediction. The

expected loss for a decision maker for a collection of expert predictions is

E(kE) = E
[
θI(X̃ ≥ θ, Y = 0) + (1− θ)I(X̃ < θ, Y = 1)

]
(2.2)

= θP (X̃ ≥ θ, Y = 0) + (1− θ)P (X̃ < θ, Y = 1)

= θP (X = 1, Y = 0) + (1− θ)P (X = 0, Y = 1).

The last step uses the definition that X = I(X̃ ≥ θ) is the transformation of the

probabilistic prediction to a dichotomous one. Unless otherwise indicated, it shall be

assumed that the (transformed if necessary) dichotomous predictions are used (this

transformation differs from that of Mason (1979) whose goal was to maximize the

expected value of various scores that differed from loss functions).
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Thus, let Xi ∈ {0, 1} designate the ith (possibly transformed) prediction. We as-

sume that the observations (Yi, Xi) are i.i.d. In particular, Yi and Xj are independent

for i 6= j, so the prediction and observation process is not dynamic and future obser-

vations do not depend on past predictions. Using standard notation for 2× 2 tables

(Bishop et al., 1975; Fienberg, 1980), (2.2) becomes

(2.3) E(kE) = θp01 + (1− θ)p10.

The expected loss for the optimal naive prediction depends both on p1+ and on the

value of θ. If p1+ ≤ θ the optimal naive prediction is XN = 0, where the superscript

N denotes “optimal naive”. This gives an expected loss of p1+(1 − θ). If p1+ > θ

the optimal naive prediction is XN ≡ 1 and the expected loss is (1 − p1+)θ. It is

convenient, though not necessary, to transform both the observations and the loss so

that the optimal naive prediction is always XN = 0 (so that p1+ ≤ θ). With the

assumption that XN ≡ 0, we have

(2.4) E(kN) = p1+(1− θ).

The null hypothesis for the skill test is

(2.5) H0 : E(kE) ≥ E(kN)

where kE and kN correspond to the loss of the expert and optimal naive predic-

tions, respectively, and expectation is taken over both predictions and observations.

Substituting for the expected loss, and noting that XN ≡ 0, (2.3)–(2.5) give

θp01 + (1− θ)p10 ≥ p1+(1− θ) ⇒ θp01 ≥ p11(1− θ) ⇒ θ ≥ p11

p+1

⇒ p1|1 ≤ θ,

so (2.5) is equivalent to

(2.6) H0 : p1|1 ≤ θ.

The alternative is that p1|1 > θ.
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Theorem 2.1. Skill defined in terms of expected loss is the same as skill defined in

terms of accuracy when the loss is symmetric, that is, when θ = 1/2.

Proof. Let θ = 1/2. The null hypothesis is

H0 : P (Y = XE) ≤ P (Y = XN)

⇒ p1|1p+1 + (1− p1|0)(1− p+1) ≤ (1− p1|1)p+1 + (1− p1|0)(1− p+1)

⇒ p1|1 ≤ 1/2.

This is identical to the original definition of skill with θ = 1/2, as was to be proved. ¤

The likelihood of the model for Y, X, written in terms of p1|1, p1|0, and p+1, is

L(p1|1, p1|0, p+1|Y,X) =

∏n
i=1 pXi

+1(1− p+1)
1−XipXiYi

1|1 (1− p1|1)Xi(1−Yi)p
(1−Xi)Yi

1|0 (1− p1|0)(1−Xi)(1−Yi)

(2.7)

The estimates for these parameters are found from the cell counts of a 2 × 2 ob-

servation and prediction contingency table in Table 1. The unrestricted maximum

likelihood estimates (MLEs) are the same as in ordinary 2× 2 tables:

p̂+1 =
n11 + n01

n++

, p̂1|1 =
n11

n11 + n01

, p̂1|0 =
n10

n10 + n00

.

Under the null hypothesis that p1|1 ≤ θ, the MLE for p+1 and the estimate for p1|0

remain unchanged and the MLE of p1|1 is p̃1|1 = min{ n11

n11+n01
, θ}. Calculation of the

likelihood ratio statistic (LRS or G) is simple as the terms involving p+1 and p1|0 drop

out and

G = −2 log

[(
p̃1|1
p̂1|1

)n11
(

1− p̃1|1
1− p̂1|1

)n01
]

= 2n11 log

[
p̂1|1
p̃1|1

]
+ 2n01 log

[
1− p̂1|1
1− p̃1|1

]
.
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When n11

n+1
> θ then p̃1|1 = θ and G > 0, and when n11

n+1
≤ θ then p̃1|1 = p̂1|1 and

G = 0. This allows us to rewrite G as

(2.8) G =

(
2n11 log

[
n11

n+1θ

]
+ 2n01 log

[
n01

n+1(1− θ)

])
I

(
n11

n+1

> θ

)

where n+1 = n11 + n01 and 0 log(0) = 0.

G has asymptotic distribution 1/2χ2
0 + 1/2χ2

1 (Self and Liang, 1987; their case 5).

Tests are carried out similarly to a standard χ2
1 test, except the chosen test level is

doubled, or equivalently one divides the p-value by 2. Examples are given in Section 5.

We conducted simulations (not shown) on G and found that the approximation

to the distribution of G improves as p1+ approaches θ and becomes worse as p1+

approaches 0. As p1+ nears 0, the approximation becomes worse in that more ob-

servations are needed to approach the asymptotic distribution of G. But as p1+

approaches θ the approximation is fairly good for sample sizes n over 20, becoming

excellent for n ≥ 50. For small n and p1+ the test is conservative (rejects too infre-

quently) because P (G = 0) is larger than the asymptotic value: therefore, users of

the test should not give undue weight to the test with small n.

2.1. Calibration. A collection of predictions need not be calibrated to be skillful.

Calibration is defined as having P (Y = 1|X = x) = x for all x (McClelland and

Bolger, 1994). In the two decision problem X can take only two values, 0 and 1,

so that if a collection of predictions was empirically calibrated then P̂ (Y = 1|X =

1) = p̂1|1 = 1 and P̂ (Y = 1|X = 0) = p̂1|0 = 0. This, of course, means that

calibrated dichotomous predictions are perfect (Yi ≡ Xi) and hence skillful. The set

of probability predictions (if any) that are transformed to dichotomous predictions

need not be calibrated to be skillful. Calibrated probability predictions are not a

guarantee of skill, e.g., X̃ ≡ p1+ is calibrated, but is just the optimal naive prediction.
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3. Skill Score

Typically one wants both a test of skill and a score that measures this skill. Such

a score is useful, for example, in tracking skill for a system of predictions over time

or for comparing predictions for similar events. Skill scores are in widespread use in

the meteorological community (Wilks, 1995; Kryzysztofowicz, 1992). Normally, skill

scores K take the form

(3.1) K(y, xE) =
S(y, xN)− S(y, xE)

S(y, xN)
,

where S(y, xN) and S(y, xE) are some error scores (usually a distance or loss: square

error is common) for collections of naive and expert predictions, respectively. The

divisor normalizes the error scores so that rough comparisons can be made between

skill scores across different situations. Scores of the type (3.1) are not proper (Winkler,

1996). A proper score is one in which Ep(K(Y, p)) ≤ Ep(K(Y, x)) for all x, p ∈ [0, 1],

and reflects the idea that the forecaster can only minimize the loss by ensuring that the

forecast x is the same as his true feeling p (Hendrickson and Buehler, 1971). Winkler

shows a proper score related to (3.1) is K(y, xE) = S(y, xN)−S(y, xE); however, this

loses the desirable normalization of (3.1). Scores in the form of (3.1) are in widespread

use, and the departure from properness does little harm in that a forecaster will find

it difficult if not impossible to manipulate the skill score advantagously; moreover,

skill scores of this form are approximately proper for large samples (Murphy, 1973)).

The difficulty with skill scores has been that their sampling distributions were

unknown making hypothesis testing impossible. However, in our case testing the

significance of a skill score is the same as the climate skill test if the following skill

score is taken (using (2.3) and (2.4))

(3.2) Kθ =
E(kN)− E(kE)

E(kN)
=

p+1(p1|1 − θ)

p1+(1− θ)
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where the expected prediction loss defined in (2.2) is taken as the error score. A

collection of perfect expert predictions will have a loss of 0, so, for us, a perfect skill

score will be Kθ ≡ 1. A collection with “negative” skill, as defined in (2.5), will have

either an expected loss the same as the naive predictions or even greater so that the

skill score will be 0 or less. The null hypothesis is

(3.3) H0 : Kθ ≤ 0.

It can be easily seen that this translates exactly to the hypothesis and test used before

defined in (2.6).

An estimate for the skill score is

(3.4) K̂θ =
(p̂1|1 − θ)p̂+1

p̂1+(1− θ)
=

n11(1− θ)− n01θ

(n11 + n10)(1− θ)
.

For general verification purposes a plausible loss is symmetric loss, that is θ = 1/2.

Symmetric loss is further justified below. Symmetric loss gives

(3.5) K̂1/2 =
n11 − n01

n11 + n10

.

This has a particularly simple form which shows easily whether predictions have

skill: this is when n11 > n01, which makes K̂1/2 > 0. Our score for symmetric loss

is also similar in form to other skill scores which are summarized in, among other

places, Wilks (1995).

3.1. Brier score. The most popular score is the Brier score, (Brier, 1950) which is

B(X) = E{(Y −X)2}. The Brier score is symmetric, predictions that are wrong in

either direction receive the same weight. A Brier score B = 0 indicates a correct

prediction, while a B = 1 indicates an incorrect prediction. Note again that the

optimal naive prediction when P (Y = 0) > 1/2 is XN = 0. We have

(3.6) E{B(XN)} = p1+, and E{B(XE)} = p10 + p01.
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Our climate skill score and the Brier score have an interesting relationship.

Theorem 3.1. Testing for skill using the Brier score, where skill is defined as when

a collection of expert predictions have a lower Brier score than the Brier score for the

optimal naive predictions, is equivalent to the climate skill test with symmetric loss.

Proof. We have by (3.6) that

H0 : E{B(XE)} ≥ E{B(XN)} ⇒ p10 + p01 ≥ p11 + p10 ⇒ p01 ≥ p11 ⇒ p1|1 ≤ 1/2,

which is identical to the climate skill test with θ = 1/2, that is, symmetric loss. Note:

The Brier score itself is generated by integrating equation (2.2) (the loss) over all

possible values of θ and assigning equal weight to each possible value. This technique

of generating general scores is developed in Schervish (1989); it should also be noted

that “scores” are not necessarily skill scores. ¤

That testing the Brier score is equivalent to testing for climate skill under symmetric

loss suggests using (3.5) for general scoring. It is also useful to say something more

about when a Brier score is skillful.

Theorem 3.2. A collection of predictions has skill (with symmetric loss) when B̂ <

p̂1+.

Proof. We know that

B̂ =

∑
(y − x)2

n
=

∑
y

n
−

∑
y∑
y

(2
∑

yx−∑
x)

n
= p̂1+

(
1− (2

∑
yx−∑

x)∑
y

)

= p̂1+

(
1− 2n11 − (n11 + n01)

n11 + n10

)
= p̂1+(1− K̂1/2).

And a collection of prediction has skill (with symmetric loss) when K̂1/2 > 0, so that

B̂ < p̂1+ as was to be proved. ¤
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4. Skill and Dependence

It is helpful to note how the test for climate skill relates to the more common test

of independence in 2× 2 contingency tables. A collection of predictions that have no

association satisfy the null hypothesis

(4.1) H0 : p1|1 = p1|0 = p1+.

The alternative is that p1|1 6= p1|0, which states that dependence between the predic-

tions and observations exists. The estimate for p+1 is the same for under the null and

alternative and the LRS is

LRS = −2 log

[(
p̂1+

p̂1|1

)n11
(

1− p̂1+

1− p̂1|1

)n01
(

p̂1+

p̂1|0

)n10
(

1− p̂1+

1− p̂1|0

)n00
]

= 2
∑

i

∑
j

nij log

(
nij

πij

)
,

where πij = ni+n+j/n++. This is the familiar LRS for independence in 2 × 2 tables

(Agresti, 1990).

Parker and Davis (1999) developed a test that is similar to the climate skill test.

The sensitivity = P (X = 1|Y = 1) = p11/p1+ and specificity = P (X = 0|Y = 0) =

p00/p0+ are commonly used to describe the efficacy of a diagnostic procedure. Parker

and Davis define accuracy as sensitivity plus specificity, a sum that must be greater

than one for the observed accuracy to be larger than chance. This implies a null

hypothesis that p11/p1+ + p00/p0+ ≤ 1 or equivalently that

H0 :
p11

p1+

≤ p01

p0+

.

This is slightly weaker than the base-rate skill test for symmetric loss in the following

way. Assume that we are in the familiar case where p1+ ≤ 1/2. The null hypothesis

of no accuracy according to Parker and Davis can be restated as p1|1 ≤ p0|1 since
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when p1+ ≤ 1/2

H0 :
p11

p1+

≤ p01

p0+

⇒ p11 ≤ p01 ⇔ p1|1 ≤ p0|1.(4.2)

This is a restatement of the null hypothesis of independence, except that it is one-

sided, not two-sided.

Sensitivity and specificity are also used in ROC curve analysis for diagnoses where

a threshold of a diagnostic test is picked as the forecast (Zhou et al. 2002). In the

standard 2 × 2 case (only one level of a diagnostic test) the area under the ROC

curve is commonly used. This is equivalent to a test on the difference between two

proportions (Tsimakas et al., 2002) which, of course, is different than the skill test.

5. Examples

This section gives examples and graphical techniques that allow one to assess the

value of predictions of dichotomous events. The skill score developed in this work

lets the decision maker specify a loss for prediction error (both false positives and

false negatives) and shows whether a set of expert predictions has value or skill.

Two decision makers with different losses could come to different conclusions: the

prediction may be valuable for one decision maker but useless to the other. Several

examples will show the wide applicability of these skill scoring methods.

5.1. Data.

Simple Diagnoses: Parker and Davis (1999) present data from two alternative

medical practitioners who predict the presence or absence of a disease.

Mammograms: Gigerenzer (2002) summarized data from the first mammo-

gram screening of 26,000 American women over 30 years old to detect breast

cancer (Gigerenzer, p. 45 & p. 261). The data are in the form of a Performance
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Table for a typical 1000 women in this study. The predictions say a woman

does or does not have breast cancer.

TRISS: Boyd et al. (1987). The TRISS model, widely used in trauma research,

is a logistic regression predicting probability of death. The model has three

inputs: a Revised Trauma Score (RTS), an Injury Severity Score (ISS), and

an indicator of Age greater than 54 years. The TRISS model will be compared

a revised TRISS model to see whether the revised model is better.

5.2. Simple Diagnoses. As an example of a simple test, Parker and Davis (1999)

evaluated the accuracy of two alternative medicine practitioners (Q1 and Q2) who

were to diagnose the presence (Y = 1) or absence (Y = 0) of disease in 36 patients.

From Tables 2 and 3, we see that Q2 has used the optimal naive diagnoses: the

probability of disease in this sample was less than 1/2, so that the optimal naive

diagnosis predicts “no disease” in each patient. Q2 obviously has no skill.

Q1 has attempted more than just parroting the optimal naive prediction, but has

still not performed well enough to be skillful. We have K̂1/2 = −2.75 < 0 which

indicates no skill. There isn’t even dependence between Q1’s diagnoses and the truth

(dependence LRS = 1.44, p = 0.23). This is strong evidence that the methods used

by Q1 and Q2 to diagnosis disease are wanting. Parker and Davis came to the same

conclusion using their test.

5.3. Eliciting Loss. There are typically two situations for prediction verification,

the general and specific. The general verification case is when the predictions were

issued to a wide number of users whose loss functions were unknown and most likely

widely different. The forecaster must consider these varied losses in ascertaining the

value of the predictions. The specific case is when an exact loss function is known.
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The decision maker only need consider a specific θ. A healthy woman considering a

precautionary mammogram is an example of the specific case.

Both the skill score Kθ and the test statistic G show explicit dependence on θ,

which is the loss. This highlights the fact that a loss must first be chosen in order to

estimate and assess the statistical significance of skill.

The costs associated with prediction error are not always immediately obvious. The

costs need not be monetary and can instead be emotional costs, or whatever else is

relevant to the prediction user. We will use the mammography example to illustrate

the key point: the user must not be influenced by the fact that the error probability is

low; she must not let the small chance of error lead her to underestimate the true cost

of that error when it occurs. (Harder to factor for any particular woman is that the

error rate, particularly the false positive error rate, is widely variable both within and

across radiologists; Elmore et al., 2002; this variability is ignored in this analysis.)

A healthy 40 year-old woman’s costs for a false positive mammogram might be

stress, depression, unnecessary treatment, the mislabelling of non-harmful growths

such as ductal carcinoma in situ (Berry 1998; Berry 2002), the possible increased risk

of subsequent cancer (McCann et al., 2002) and so on. False negative costs might

be delayed treatment, or the ignoring of true symptoms because of false reassurance

(“the test said I was fine”). Imagine for a young, healthy woman a false positive cost

of 70 (in arbitrary units) and a false negatives cost of 210. This gives a θ = 1/4 and

shows that, as is likely for young, healthy, and asymptomatic women, false negatives

incur more costs than do false positives, but the costs are not overwhelmingly higher.

Another woman, say older and more at risk, might have a different set of costs

and might use a different scale in assessing her scores. This means that costs cannot
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be compared from woman to woman, but skill scores can be compared as the next

subsection will show.

Now imagine a physician who was asked by our healthy woman whether she should

receive a precautionary mammogram. The doctor’s costs are similar to the woman’s,

but the doctor also worries about malpractice suits (and associated increase in insur-

ance rates and loss of reputation), concerns the woman does not have. The doctor’s

costs for a false positive, say, are 50, and for false negatives 1050. This gives θ = 1/22

and shows that, for this imaginary doctor, false negatives incur much more costs

than do false positives. Again, the individual scores of the doctor cannot be directly

compared to the woman’s.

5.4. Mammograms. The Mammogram Performance Data are given in Table 4.

(These data represent an accurate reduction from the full set of 26,000 women as

presented in Gigerenzer (2002). Having data from all tests would not effect the cal-

culation of the skill score, as it would involve multiplying the numerator and the

denominator of Kθ by the same constant. But it would effect the calculation of the

test statistic G because the sample size would increase. Because of this, our results

make it appear that p-values are larger than they would ordinary be; however this

section is only for illustration.)

The accuracy, A, of the mammograms at detecting breast cancer is the probability

of a correct forecast and is estimated as A = (7 + 922)/1000 = 0.929 Since p̂1+ =

0.008 < θW = 1/4, the optimal naive prediction is to say “no cancer.” The accuracy

of this optimal naive prediction, which might be called a naive-o-gram, is AONF =

(70 + 922)/1000 = 0.992 which is much larger than the actual mammograms. This,

as mentioned before, does not take into account the loss and shows why accuracy is

not necessarily the best measure of performance.
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Using the woman’s example from Section 5.3 gives K̂1/4 = −2.04. This is, of course,

less than 0 and indicates that the mammogram’s performance is not skillful. That

means the woman would have been better off had she opted for the naive-o-gram.

But, the skill score for the doctor is K̂1/22 = 0.415, which is greater than 0 and

indicates skill. The doctor would then calculate the test statistic G and formally

check for skill. The calculations is G = 3.87 which has a p-value of 0.025 and would

lead the doctor to recommend the test.

This example highlights the important fact that a prediction may be valuable to

one person (the doctor) but not valuable to another (the woman). The doctor and

the woman would make different choices in this example and conflict would arise;

therefore, both sides should make explicit their costs so that an understanding could

be reached. A single mammogram is never taken as an authoritative diagnostic test;

further tests are always required. But this is the point. If the test is so inaccurate

that the expected costs of its false positives, including further tests, outweigh the

expected costs of its false negatives, women would be better off not receiving the

test. See Gigerenzer (2002) for an extended analysis of the problems of mammogram

screenings.

5.5. Guidance. A more common problem is the general verification situation, where

the individual loss functions are not known. One approach is to plot the prediction’s

skill score through a range of values for θ, as shown in Figure 1. Plots like these were

first suggested in Wilks (2001) and Schervish (1989). Plotting of the skill score shows

when the prediction has potential value to different decision makers.

Here, we plot log θ in the range of 0 to 1/2 to show fine detail for small θ. We could

have plotted Kθ for θ > 1/2, though it is unlikely many people’s losses would be in
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this range. Moreover, we can exactly calculate, using (3.4), the range where K̂θ > 0,

which for this data is in θ ∈ [0.0011, 0.0909].

5.6. TRISS and model building. The Trauma Injury Severity Score estimates

the probability of death (or, of survival) of patients who sustain trauma (Boyd et al.,

1987). TRISS has been in use for more than a decade for research purposes to allow

comparison of survival probabilities from various practice settings. It is the primary

predicative variable used in the National Trauma Data Bank of the American College

of Surgeons (Gabbe et al., 2004).

TRISS is a multifactorial construct, which incorporates the type of injury, blunt

or penetrating; severity of injury, as measured by the Revised Trauma Score (RTS,

a physiological component) and the Injury Severity Score (ISS, a anatomical compo-

nent); and an age index. Several components were employed to make TRISS robust

and generalizable to many populations of trauma patients. In this paper we only

consider blunt injuries.

The Revised Trauma Score (RTS) was introduced the late 1980’s and is a physiolog-

ical scoring system, with high inter-rater reliability (e.g. Eichelberger et al., 1989).

It is scored from the vital information on the patient at the time of presentation,

and consists of a linear weighting of the Glasgow Coma Scale (which is most heavily

weighted), Systolic Blood Pressure, and Respiratory Rate.

The Injury Severity Score (ISS) is based on the anatomical distribution of the

injuries and provides an overall score for patients with multiple injuries (e.g. Rutledge

et al., 1997). Each injury is assigned a score from the Abbreviated Injury Scale

(AIS) and allocated to one of six body regions (Head, Face, Chest, Abdomen/Pelvis,

Extremities, and External). Only the highest AIS score in each body region is used

and the 3 most highly scored anatomical regions have their scores squared and the
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squared values are summed to produce the ISS score. The ISS score has values from 0

to 75, however, if an injury is assigned an AIS of 6 for a lethal injury, the ISS score of

75 is automatically assigned. The ISS score correlates well with mortality, morbidity,

and length of stay in hospital.

As mentioned above, the last component of TRISS, the age index, is the indicator

of age greater than 54.

We sought to build a better TRISS model by incorporating a measure of comorbid-

ity and by possibly changing the age index. Full details on the importance of these

factors, and their meaning to trauma research, is contained in Melniker et al. (2004).

We do not concentrate on the revised’s model development here, except to note its

performance in comparison to the original TRISS model.

Data on about 46,000 patients was provided by the National Trauma Data Bank.

The elements of the data were death indicator, injury type, age, RTS, ISS, and

Charlson comorbidty index (Charlson et al., 1994), which has been found to correlate

well with mortality. We used only the blunt trauma injury patients and TRISS model.

The widely-used Charlson comorbidty index is a scale, starting a 0, indicating no

medical comorbidity, to 16, indicating dire straits. The idea is that patients who

arrive at the emergency unit with significant prior medical comorbidity would have

less chance for survival than other patients with similar injuries and no comorbidity.

We fit a logistic regression model using a random sample of half the patients with

RTS, ISS, and comorbidty index as predictors, and an indicator of age greater or

equal to 70 (this cut off was better indicated by the data, though the improvement

over the original cut off is minimal). We validated the model using skill with the

other random half of the data for both the original and revised TRISS model.
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Figure 2 shows the skill score for both the revised and the original TRISS regression

models (on the validation data only). The 95% point-wise confidence intervals are

also plotted for the revised TRISS model. The skill score for the revised model is

larger than the skill score for the original model over most of the range of user losses.

In particular, the original TRISS model at θ = 1/2 has no skill, which says that

users of the original model would have been better off had they used the optimal

naive prediction, which is “no death” for everyone. This is despite the fact that the

regression coefficients were “significant”.

This informal analysis shows that the comorbidity index certainly improves the

model (and hints at how skill scores may be used for model selection).

6. Conclusions

Formal tests for simple skill for predictions for dichotomous events have been de-

veloped. Skill was defined in two ways. A collection of predictions were said to be

skillful if the expected loss incurred while using them was less than the expected loss

that would have been incurred had the optimal naive predictions been used instead.

This definition allows the loss for prediction error to be asymmetric. A second defini-

tion of skill, and equivalent to the first definition under symmetric loss, requires that

a collection of predictions have a higher probability of being correct than a collection

of optimal naive predictions.

Skill scores for these situations have also been given, and it was shown that testing

for skill using these scores is equivalent to formal tests of skill previously developed.

Skill scores are a handy measure of prediction performance and here have the in-

terpretation of the relative difference in loss between the expert and optimal naive

collection of predictions.
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Skill, for a 2×2 contingency table, was shown to be a stronger association between

the observations and predictions Y and X than that of dependence (see, for example,

Agresti, 1990).

The costs of false positives and the manner of handling them in the decision mak-

ing process are much discussed in the medical literature. The costs of false positives

are not negligible. Thorne et al. (1999) report that women waiting for a subsequent

diagnosis after an initial positive mammogram find it an “intense and often agonizing

experience.” Barton et al. (2001) report that women who have had false positives

seek (and pay for) more health care over the subsequent year than do other women.

Burman et al. (1999) and Pisano et al. (1998) found that women with initial false

positive screenings were more likely than other women to return for future mammo-

grams. Berry (1998) carried out a systematic statistical study of mammograms for

women in their forties and argued that the mammogram’s benefits were small, and

could even be negative; he urged that women better understand their own potential

risks. Skill scores, computed individually, could help in this goal.

There is much future work to be done. Extensions of the skill score test to the case

where the observed series is multivariate would be enormously useful, particularly

when the observed variables are spatially related (such as a precipitation prediction

map). Extensions to categorical and continuous-valued observations should be ex-

plored. Comparisons of our skill score curves with receiver operating characteristic

(ROC) curves should also prove useful (see Wilks, 2001, and Venkatraman, 2000).

In this paper it was assumed that the parameters of the observed series were con-

stant in a given collection of observations. In practice these parameters may vary,

for example, seasonally or over subsets of patients for diagnostic tests. Probability

of precipitation is a prime example of varying parameters. The skill scores could
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still be used to compute a rough score, but the effect on the skill test remains to be

investigated.
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Table 1. Standard 2× 2 contingency table.

Y = 1 Y = 0
X = 1 n11 n01

X = 0 n10 n00

Table 2. Diagnoses for Q1.

Y = 1 Y = 0
X = 1 3 14
X = 0 1 18

Table 3. Diagnoses for Q2.

Y = 1 Y = 0
X = 1 0 0
X = 0 4 32

Table 4. Mammogram Performance table. Data is presented as an
average over 1000 women but the estimates are from a larger sample.

Y = 1 Y = 0
X = 1 7 70
X = 0 1 922
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Figure 1. Skill score range plot for θ ∈ (0, 1/2], presented for log θ
for the mammogram data. The dashed horizontal line shows 0 and pre-
dictions below this line have no skill; the dashed vertical line indicates
θ = 1/2.
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Figure 2. Skill score range plot for all θ for the TRISS original and re-
vised model data. 95% confidence bounds, dashed lines, for the revised
model are also plotted.


