Why most statistics don’t mean what you think they do: Part I.

Here’s a common, classical statistics problem. Uncle Ted’s chain of Kill ’em and Grill ’em Venison Burgers tested two ad campaigns, A and B, and measured the sales of sausage sandwiches for 20 days under both campaigns. This was done, and it was found that mean(A) = 421, and mean(B) = 440. The question is: are the campaigns different?

In Part II of this post, I will ask the following, which is not a trick question: what is the probability that mean(A) < mean(B)? The answer will surprise you. But for right now, I merely want to characterize the sales of sausages under Campaigns A and B. Rule #1 is always look at your data! So we start with some simple plots:

Box plot and density plot of the sales of campaigns A and B

I will explain box and density plots elsewhere; but for short: these pictures show the range and variability of the actual observed sales for the 20 days of the ad campaigns. Both plots show the range and frequency of the sales, but show it in different ways. Even if you don’t understand these plots well, you can see that the sales under the two campaigns was different. Let’s concentrate on Campaign A.

This is where it starts to get hard, because we first need to understand that, in statistics, data is described by probability distributions, which are mathematical formulas that characterize pictures like those above. The most common probability distribution is the normal, the familiar bell-shaped curve.

The classical way to begin is to then assume that the sales, in A (and B too), follow a normal distribution. The plots give us some evidence that this assumption is not terrible—the data is sort of bell-shaped—but not perfectly so. But this slight deviation from the assumptions is not the problem, yet.

Can having a mammogram kill you? How to make decisions under uncertainty.

The answer to the headline is, unfortunately, yes. The Sunday, 10 February 2008 New York Post reported this sad case of a woman at Mercy Medical Center in New York City. The young woman went to the hospital and had a mammogram, which came back positive, indicating the presence of breast cancer (she also had follow-up tests). Since other members of her family had experienced this awful disease, the young woman opted to have a double mastectomy and to have have implants inserted after this. All of which happened. She died a day after the surgery.

That’s not the worst part. It turns out she didn’t have cancer after all. Her test results had been mixed up with some other poor woman’s. So if she never had the mammogram in the first place, and made a radical decision based on incorrect test results, the woman would not have died. So, yes, having a mammogram can lead to your death. It is no good arguing that this is a rare event—adverse outcomes are not so rare, anyway—because all I was asking was can a mammogram kill you. One case is enough to prove that it can.

But aren’t medical tests, and mammograms in particular, supposed to be error free? What about prostate exams? Or screenings for other cancers? How do you make a decision whether to have these tests? How do you account for the possible error and potential harm resulting from this error?

I hope to answer all these questions in the following article, and to show you how deciding whether to take a medical exam is really no different than deciding which stock broker to pick. Some of what follows is difficult, and there is even some math. My friends, do not be dissuaded from reading. I have tried to make it as easy to follow as possible. These are important, serious decisions you will someday have to make: you should not treat them lightly.

Decision Calculator

You can download a (non-updated) pdf version of this paper here.

This article will provide you with an introduction and a step-by-step guide of how to make good decisions in particular situations. These techniques are invaluable whether you are an individual or a business.

The results that you’ll read about hold for all manner of examples—from lie detector usefulness, to finding a good stock broker or movie reviewer, to intense statistical modeling, to financial forecasts. But a particularly large area is medical testing, and it is these kinds of tests that I’ll use as examples.

Many people opt for precautionary medical tests—frequently because a television commercial or magazine article scares them into it. What people don’t realize is that these tests have hidden costs. These costs are there because tests are never 100% accurate. So how can you tell when you should take a test?

When is worth it?

Under what circumstances is it best for you to receive a medical test? When you “Just want to be safe”? When you feel, “Why not? What’s the harm?”

In fact, none of these are good reasons to undergo a medical test. You should only take a test if you know that it’s going to give accurate results. You want to know that it performs well, that is, that it makes few mistakes, mistakes which could end up costing you emotionally, financially, and even physically.

Let’s illustrate this by taking the example of a healthy woman deciding whether or not to have a mammogram to screen for breast cancer. She read in a magazine that all women over 40 should have this test “Just to be sure.” She has heard lots of stories about breast cancer lately. Testing almost seems like a duty. She doesn’t have any symptoms of breast cancer and is in good health. What should she do?

What can happen when she takes this (or any) medical test? One of four things:

Publisher needed: Stats 101

I've been looking around on various publisher's websites over the past few weeks to see which of them might take Stats 101 off my hands. I have also been considering…

The B.S. octopus

Jonathan Bate, of Standpoint, recently wrote an essay "The wrong idea of a university": It used to work like this. Dr Bloggs, the brilliant scholar who had solved the problem…